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FOREWORD

This technical report is submitted to the Georgia Institute of

Technology to comply with the report requirements of contract I-A-2550,

which is a subcontract under United States Navy contract N-00039-80-C-

0032. This report is published in four parts, each separate and inde-

pendent of the others. The final technical report of this contract is

due to be submitted in September, 1981.
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REPORT SUMMARY

Auburn University, under contracts N66314-73-C-1565, N66314-74-C-1352,

N66314-74-C-1634, N00228-75-C-2080, N00228-76-C-2069, and N00228-78-C-2233

f with the United States Navy, and has investigated various aspects of the

Marine Air Traffic Control and Landing System (MATCALS). This report

contains the results of the continuation of these investigations under

I contract I-A-2550 with the Georgia Institute of Technology. The report

is organized into three main sections, namely Part Two, Part Three, and

IPart Four. Part Two contains the results of an investigation into re-

placing the c-s filter in the MATCALS digital controller with an observer,

in order to reduce the effects of radar noise. Part Three presents a cen-

troid algorithm based up return amplitude-versus-angle signature. Part

Four presents an investigation of adaptive filtering algorithms for the

[ ATCALS system.

[Observer Design
[Presently a problem exists in the closed-loop control of the MATCALS

system due to the noise generated in AN/TPN 22 radar. An a-s filter

[in the flight dynamic and control module is employed to reduce the noise

effects while estimating the position and the velocity of the aircraft.

An observer may also be used to estimate the status of the aircraft. Part

[Two of this report presents the results of an investigation of the

replacement of the a-B filter with an observer.
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Figure 1-1 shows the F4J aircraft lateral control system containing

the a-a filter. Figure 1-2 shows the same system with the a-a filter

replaced by an observer. The techniques for designing an observer are

simple; however, these techniques do not completely specify the observer.

Certain parameters in the observer must be obtained by trial and error. A

The criteria used to determine these parameters are explained in Chapter

3 of Part Two.

Figure 1-3 gives a typical reponse of the lateral control system of

the F4j aircraft for the final sixty seconds of flight before touchdown.

The inputs to this simulation were radar noise and wind turbulence, both

of which are disturbances. It is seen that the observer control system

reponds less to the disturbances than does the a-B filter control system.

Table 1-1 presents the results of a Monte Carlo simulation based on

twenty simulations. The column labeled r.m.s. is the root-mean-square

value of the lateral displacement of the aircraft from the extended *1
centerline of the runway for the final sixty seconds of flight. It is

seen that the observer improves the system response to the radar noise,

but degrades the system response to the wind turbulence.

These studies will continue. The parameters of the observer which

were obtained by trial and error are probably not optimal. Hence future

investigations will be directed toward a better choice of these parameters.

Radar Centrold Investigation

A method of estimating the centroid location of a target utilizing

scan return amplitude-versus-angle information is introduced in Part

Three. The method is compared to three thresholding estimators and a first

moment estimator in a computer-simulated automatic landing system.

L
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1 7
It was found that the method introduced was the most robust and ac-

curate of the estimators in noise, due to its unique scan rejection

I capability. In periods of high signal-to-noise ratio the method had less

error than the thresholding methods, and was similar in ability to the

S first moment estimator. Further, the pulse transmissions required to ob-

tain a desired level of performance was much reduced from the thresholding

methods employed in the simulation.

Adaptive Filtering Algorithms

Two approaches to adaptive filtering applicable to the MATCALS system

are presented in Part Four. The first approach is based upon adaptively

selecting the output from either a fixed parameter c-a or a fixed parameter

ca--y filter. This selection is determined by an algorithm which incor-

porates an estimate of the tracking error correlation coefficient. The

second approach is based upon an algorithm which automatically adjusts the

parameters of an a-a filter to adapt to the dynamics under track.

I
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THE DESIGN OF OBSERVERS

FOR THE MATCALS SYSTEM

ABSTRACT

An observer is designed for a reduced order system that represents

the lateral system of the F4J aircraft in an automatic landing configura-

tion. This observer is to be used in the aircraft's lateral control sys-

tem to estimate its lateral position and lateral velocity. The system

currently uses an a-s filter to estimate position and velocity. The ob-

server is designed to replace the a-s filter without significantly chang-

ing the characteristics of the system. Results that are obtained from

simulations of the F4J aircraft lateral control system indicate that the

observer improves the system's response.
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I. INTRODUCTION

The design of control systems for the automatic landing of aircraft

has received considerable attention in recent years. Much of this atten-

tion has been directed towards military purposes. One such automatic

landing system has been developed for the U.S. Navy and is called the Ma-

rine Air Traffic Control and Landing System (MATCALS). During the opera-

tion of the MATCALS control system, a considerable amount of noise is

produced. This noise is present in such a significant amount that the

quality of the control system's performance is greatly degraded. The pur-

pose of this report is to present a method that can be used to improve

the MATCALS control system's performance. This method consists of incor-

porating an observer into the control system.

The method of incorporating an observer into the MATCALS control

system is illustrated in this report by employing a simulation of a con-

trol system of an individual aircraft. The control system simulation to

be used is that of the lateral control system of the F4J aircraft. Once

( an observer has been incorporated into this control system simulation, re-

sults will be presented to show the effect that the observer has on the

performance of the control system.

A discussion of observers is given in Chapter II. This discussion

includes a definition of observers and how they are designed. A general

description of the MATCALS control system and a detailed description of

the F4J aircraft lateral control system is presented in Chapter III. This

1!
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detailed description is directed towards the simulation of the F4J air-

craft lateral control system. The process of designing an observer fcr

the lateral control system is given in Chapter IV. Chapter V presents a

discussion of the effectiveness of the observer when used in the F4J air-

craft lateral control system.

2i
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II. OBSERVERS

*In optimal control theory, the design of the controlling device is

often developed on the assumption that all the states of the system being

controlled are in some way available for direct measurement. By knowing

the system's states, along with a description of its dynamics, the fu-

ture behavior of the system can be determined. One way of determining

this future behavior is through the use of the system's state equation

model (2-1). With all this information available, a scheme can then be

developed where an input can be calculated to control the system in the

least costly manner. The system model of linear, time-invariant dis-

crete-time system can be expressed as

x(k+l) = Ax(k) + Bu(k) (2-1)

where

x(k) is an nxl state vector

u(k) is an mxl input vector

A is an nxn system matrix

B is an nxm input distribution matrix

Associated with this system equation is an output matrix equation

y(k) = Cx(k) (2-2)

where

X(k) is an pxl output vector

3



C is an pxn output matrix

An unfortunate aspect of modern control theory is that in most

realistic systems the total state vector is not available for direct

measurement. So either this way of controlling a system is impractical,

or a method of evaluating an exceptable estimation of the state vector

must be found. This need for a means to estimate the state vector has

led to the development of observers. The observer, sometime known as an

estimator, was first purposed and developed by Luenberger [l] - [3]. An

observer-estimator will be defined as a system that reconstructs the

state vector of another system.

Actually, almost any system may be used as an observer-estimator

[4]. All that is needed is to use the input and the output of the sys-

tem that is to be observed as the inputs to the system being used as the

observer. Now the state vector of the observer will be some linear trans-

form of the state vector of the original system. However, using this

type of observer scheme does not guarantee the quality of the estimated

state vector. But, realizing that almost any system can be used as an

observer shows the freedom in the design of observers.

Observability

Prior to the designing and the implementation of an observer, it is

necessary to determine if the system that is to be observed is in fact

observable. If the system in question is described by (2-1) and (2-2)

the observability of the system can be confirmed if the following is

true [6]:

4
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I. The system of (2-1) and (2-2) is observable if every

J dynamic mode in the system matrix A is connected to

the output vector y(k) through the output matrix C.

II. The system of (2-1) and (2-2) is observable, if for

j any initial value x(O), there is a finite N such that

x(O) can be computed from the observations of y(O),

y_(), ... , y(N-l).

I An analytical test for observability will be developed according to def-

inition II.

jLet the inputs, u(k), to the system be zero and set the initial

values x(O) = The system is now described by

x(k+l) = Ax(k) (2-3)

y(k) = Cx(k) (2-4)

(2-5)

The outputs y(k), for k = 0, 1, 2, ..., N are

_(o) = Cx(o) =

- y(l) = Cx(I) = CAx(0) = CAx

y(2) = C x(2) - CAx(l) = CA2,(O) - CA2 O

N-
y(N-l) CAN I

Putting these into matrix form gives

5
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y(O) C

Y(1) CA

(2-6)

y(N-l) CAN-1

To solve for the vector 4, it is necessary for the coefficient matrix

to be invertable, and to be invertable a matrix must be nonsingular. It

is readily apparent that the number of columns of the coefficient matrix

is the same as the order of the system, n, and that the number of rows

of the matrix is N. Therefore, if N is less than n (2-6) is unsolvable

for x., and if N is greater than n, rows CAn, CAn+l, on up to CAN -l will

be added. But, by the Cayley-Hamilton Theorem [7], it can be shown that

these new rows will be linear combinations of the lower order rows;

therefore, these new rows will not increase the rank of the matrix.

Thus, if the system of (2-1) and (2-2) is to be observable, the coeffi-

cient matrix of (2-6) must be of rank n. Therefore the test for observ-

ability is that the (square) matrix, e,
C

CA

CA2

(2-7)

LC6 n - l

must be nonsingular.

6
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For convenience, the system described by (2-1) and (2-2) will be

assumed observable throughout the remainder of this chapter.

Di

A review of the literature indicated that there are two different

design procedures of observers for discrete systems. The first of these

was developed by Tse and Athans, [4] - [5], and the second procedure was

found in a book by Franklin and Powell [6]. The design procedure of

both are based on the idea that all available information is to be used;

i.e., both the inputs and the outputs of the system to be observed will

be used. These input and output signals should be as noiseless as pos-

sible for best results. If noise is a significant problem, then the use

of a Kalman filter to estimate the state vector should be investigated

[6].

Tse-Athans Observer

This observer design was developed for a linear time-varying dis-

crete system. However, since the time-invariant system is just a more

restricted case of the time-varying system, the design is applicable to

this case.

Before starting the description of this design, the following def-

initions and conditions must be given.

Let Mab denote the set of axb real valued matrices. The expression

H C Mab will read: the matrix H is an element of the set of matrixes Mab*

If a < b then the null space of a matrix H c Mab will be denoted by N[H]

where

N[H] = Ila;H Oa 7 (2-8)

I I 7
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where a is an bxl vector and 0. is the zero axl vector.

Now let the matrix C Mpn be of rank p; then the set

QCC;ps,n) = (T M :NT3 n N[C) = On1 (2-9)
Sn

This set is called the set of complimentary matrices of order s for the

matrix C if s>n-p. For a more complete description of these definitions

see [4] and the references therein.

Suppose the state equation model of (2-1) and (2-2) is the system

to be observed.

x(k+l) = Ax(k) + Bu(k) (2-1)

Y(k) = Cx(k) (2-2)

An observer can be designed which has a state equation model of

z(k+l) = F z(k) + Gu(k) + y(k) (2-10)

where

z(k) is an sxl state vector of the systrver

_(k) is an mxl input vector of the system

y(k) is an pxl output vector of the system

F is an sxs system matrix of the observer

G is an sxm input distribution matrix of the observer

D is an sxp output distribution matrix of the observer

This system Is called an s-order observer where s can take on any integer

value greater than or equal to n-p.

With the appropriate choice of the initial value of z(O) and the

sxn matrix T, the following will be true.

z(k) = Tx(k) (2-11)

a. .. . . . . - . .

- - - -
1~ - N
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where z(0) will be a guess and the matrix T will conform to

T c Q[C; p, s, n] (2-12)

The matrix T fits this condition if and only if there exist an nxs P

matrix and an nxp V matrix such that

PT + VC = I (2-13)

where the matrix I is an nxn identity matrix.

With the chosen T matrix and (2-13) satisfied, the matrices F, D,

and G can be evaluated by

F = TAP (2-14a)

D = TAV (2-14b)

G = TB (2-14c)

where the matrices 0 and V satisfy (2-13) and A and B come from (2-1) of

the original system. Substituting (2-14) into (2-10) we get

z(k+l) = TAPz(k) + TBu(k) + TAVy(k) (2-15)

Equation (2-15) can be shown to be an observer of the system de-

scribed in (2-1) and (2-2) by evaluating

z(k+l) - Tx(k+l) =

TAPz(k) + TBu(k) + TAVy(k) - TAx(k) - TBu(k)

= TAPz(k) + TAVy(k) - TAx(k)

= TAPz(k) + TAVCx(k) - TAx(k)

Solving for VC from (2-13),

VC = I - PT

Then



z(k+l) - Tx(k+l) = TAPz(k) + TA[I-PT]x(k) - TAx(k)

= TAPz(k) + TAx(k) - TAPTx(k) - TAx(k)

= TAP[z(k) - Tx(k)] (2-16)

Therefore if the initial value z(O) is chosen to be Tx(O), z(k+l) is

equal to Tx(k+l) and the observer described by (2-15) will be an observer

of the system described by (2-1) and (2-2).

Now that an observer design has been developed, a way to reconstruct

the state vector, x(k) will be shown. Let the nxl vector x(k) be given

by

x(k) = Pz(k) + Vy(k) (2-17)

The vector x(k) can be shown to be an estimate of the state vector x(k)

by substituting for z(k) and y(k) with (2-11) and (2-2) respectively.

Thus

x(k) = PTx(k) + VCx(k)

[PT + VC]x(k)

Therefore

x,(k) j (k) -

using (2-13). It is necessary here, as it was for the observer equation

in (2-15), that for good results a good choice of z(0) is required. That

is,

z(O) = Tx(O) (2-18)

In other words, knowledge of the initial values of the originals system

states is necessary. If the values chosen for the initial z(O) are in

10
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error, then this error will be propagated on through the sequential

values of z(k). A pictorial representation of (2-15) and (2-17) is

shown in Figure 2-1.

Franklin-Powell Observer

The approach taken by Franklin and Powell to observe the state vec-

tor of the system

x(k+l) = Ax(k) = Bu(k) (2-1)

y(k) : Cx(k) (2-2)

was, at first, to build a model of the original system and then just mea-

sure the readily available state vector of this model. The state equa-

tion of this observer is

x(k+l) = A x(k) + Bu(k) (2-19)

where the vector x(k) will be the estimate of the state vector x(k).

This scheme of observing the state vector of the original system should

work if the initial values of x(O) can be set equal to the initial values

of x(O) and if an accurate system model is available. This "open-loop"

observing scheme is shown in Figure 2-2.

However, if the initial value of x(O) is incorrect then the estima-

tion of the future values of the state vector will also be incorrect.

The error of these estimates will be defined as x(k), where

x(k) = x(k) - I(k) (2-20)

Then the error's difference equation is

x(k+l) - x(k+l) = Ax(k) + Bu(k) - A_(k) - Bu(k)

-(k+l) - Ax(k) (2-21)

. .. .._ .. m lmm ml1m
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As can be seen, the error's dynamics are the same as the original system's

dynamics. Thus if the system is always in motion then the error will al- 5.

so be in motion with the same dynamics; therefore the error will not

disappear.

A way to compensate for this error is to feed back the difference

between the measured output of the original system and the corresponding

output of the observer, as is shown in Figure 2-3. The feeding back of

this difference signal will constantly correct the observer, thereby min-

imizing the error x(k). The state equation of this scheme is

x(k+l) = Ax(k) + Bu(k) + L[y(k) - Cx(k)] (2-22)

where the gain matrix L will be nxp. Gathering terms will give the fol-

lowing state equation

x(k+l) = [A-LC]x(k) + Bu(k) + Ly(k) (2-23)

Again a difference equation is found for the error

x(k+l) - x(k+l) = Ax(k) + Bu(k) - Ax(k) - Bu(k) j
- LX(k) + LC;(k)

Substituting for y(k) with (2-2) yields

x -(k+l) A(k) - A_(k) - LCx(k) + LCx(k)

x(k+l) = [A-LC]x(k) (2-24)

Now the error dynamics are seen to be determined by the matrix [A-LC],

and with a proper choice of the matrix L, the error's dynamics and thus

the observer's dynamics, can be made "faster", thereby causing x(k) to

converge to zero in a more satisfactory manner than in the "open-loop"

observer. To say this another way, the vector x(k) will converge to the

14
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I
state vector x(k) faster regardless of the value of 1(O), if a good

choice of the gain matrix L is made.

Another advantage of this "closed-loop" observer over the "open-

loop" observer is that if the matrices A and B of the observer are not

jexactly the same as the matrices A and B of the system, the error caused
by these inaccuracies are made acceptably small.

The determination of the gain matrix L can be done in two different

ways. The first way is by matching coefficients and the second is to use

Ackermann's estimation formula. Both ways assume that the desired pole

locations of the observer are known.

Matching Coefficients. The matching coefficient technique of cal-

culating the gain matrix L is the "brute force" method. First it is

necessary to expand the determinant

CL(z) = IzI - [A-LC]I (2-25)

which will give the characteristic polynomial of the observer in terms

of the elements of the matrix L. Next, the desired observer characteris-

tic polynomial is expanded.

cz(z) = (z-P1)(Z-P 2) ... (z-Pn) (2-26)

where the Pi's are the desired pole location of the observer. All that

is needed now is to set a L(Z) of (2-25) equal to a(z) of (2-26) and

solve for the elements of the gain matrix L.

Ackermann's Formula. For a sincle-output system, a more systematic

method of computing the gain matrix L is through the use of Ackermann's

Formula
S-15



C -1 0

CA 0

CA
2

L= c(A) (2-27)

0

CA'  1

The polynomial c(A) is the observer's desired characteristic polynomial

described in (2-26), with the complex variable z replaced by the system

matrix A. The coefficient matric that has the rows of C, CA, CA2  .

CAn-l ,is recognized to be the observability matrix, 9, described in

(2-7). This matrix is square, since the C is a row matrix. Finally the

vector of zeroes and one 1 is an nxl unit vector. The development of

Ackermann's Formula is given in Appendix A, and a BASIC program to corn-

pute the gain matrix L, based on Ackermann's Formula, is given in Appendix

B.

Reduced Order Observer

The reconstruction of the entire state vector of a system is not

necessary, when some of the system states are directly measurable.

Therefore, it is not necessary for the observer to have the same order 4
as the system. The minimum order that an observer can have is no less

than n-p, where n is the order of the system being observed and p is the

rank of the output matrix. In other words there is no need to recon-

struct states that are already available from the output of the original

system. But, if there is significant noise on the measurements of the

system, better results are obtained with the use of a full order observer.
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Again, take the system described by (2-1) and (2-2)

x(k+l) = Ax(k) + Bu(k) (2-1)

y(k) = Cx(k) (2-2)

f The state vector, x(k), can be divided into two parts. The first con-

tains the states that are measured, x (k), and the second contains the

states that are not measured, 4(k). This division gives the following

partitioned system state equations

(+1) A -_[A (k) [a
] aTa ] , b + 'a. uk (2-28)

yk [1i 0]E ( 1

Solving for the measured and unmeasured states gives

Aa(k+l) = Aaaa (k) + Aabb(k) + Bau(k) (2-29)

4b(k+l) = Aba2a(k) + Ab b(k) + BbU(k) (2-30)

Equation (2-30) can be treated as a system's state equation with the

(n-p)xl vector 4,(k) as the state vector and the (n-p)x(n-p) matrix Abb

as the system matrix. The other two term, Aba.S(k) and Bbu(k) are known,

so therefore they can be treated as the input. With equation (2-30)

treated as just described, equation (2-29) can be used as the output

matrix equation, where the matrix Aab will be the px(n-p) output matrix
and the output is seen to be equal to x-(k+l) Aaa(k - Ba (k).

Summarizing the above substitutions

x(k) + 4(k)

A -Abb

17



Bu(k) b Aax (k) + ebU_(k)

y(k) .- (k+l) - Aaa (k) - BaU(k)

C Aab
ab'

and using these in the observer equation (2-22) will give the following

reduced-order observer equation

_(k+l) = Ab xb(k) + Abax(k) + Bu(k)

+ LExa(k+l) - Aaala (k) - B au(k) - Aa (k)] (2-31)

Gathering terms and rewriting gives

(k+l (A Abb-L Axab]_b(k) + [Aba-L A a (k)

+ [Bb-L Ba]U(k) + L xa(k+l) (2-32)

The error state equation can be derived by subtracting (2-31) from

(2-30)

(k+1- 4(k+l)

= Abax(k) + Abl.b(k) + Bb.(k) .1
-Ab b(k) - Aba4 (k) - Bb-(k)

- L[x(k+l) - Aa X(k) - BaU(k) - A xb(k)

=Ab b(k) - Abb(k) - L[a(k+l) - Aaa_ (k) - (k )

-Aabx (k))

Substituting (2-29) in for x,(k+l) gives

-b(k+l) = Abb4b(k) - Abb.-(k) - L[Aa b?(k) Aab(k)]

= Abbxb(k) - L Aa b~b(k)

18
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= [Abb - L Aab ]x (k) (2-33)

As can be seen, the matrix L can be used again to make the error vectc'r

x(k), converge to zero relatively "fast". The gain matrix L, can be cal-

culated as described above if L Aab is substituted for LC in (2-25) or by

substituting Aab for C and Abb for A in (2-27).

Unknown Inputs

In the observer design procedures presented in this chapter, it has

been assumed that all the inputs to the system to be observed are known.

But in the real world there are a large percentage of systems that have

unknown inputs, such as noise. Therefore, a method to observe the state

vector of a system must be found where the need to know all inputs is

eliminated. Otherwise the observer can be designed just for the known

inputs and the unknown inputs are ignored. If the latter scheme is used,

it is hoped that the resulting error will be small.

A way to modify the observer design in such a way that the unknown

I inputs are not required was purposed by Wang, Davison, and Dorato [8].

This design modification can be used with the Franklin-Powell reduced

order observer design. This is true, since in the observer state equa-

J tion, (2-32) the input distribution matrix is calculated using the vari-

able gain matrix L. This calculation is seen to be [Bb - L Ba]. Now,

for example, assume that the system to be observed has two inputs, such

I that ul(k) is known and u2 (k) is unknown. The idea now is to find a

matrix L that will make the second column of the matrix [Bb - L Ba] van-

I ish. In this way no matter what the unknown input u2(k) does, the

observer will operate properly. It should be noted that if this

19
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modification is used, the freedom of picking the pole locations of the

observer is forfeited. Therefore, the L matrix found by this method

should be examined, because the poles that correspond to this calculated

L matrix might not be satisfactory. In fact this L matrix could make

the observer an unstable system.

Comment on Pole Locations

The process of picking the observer's pole locations is restricted

by only one rule; that is, the chosen pole locations should not cause the

observer to be unstable. In practice, the observer's roots are picked

so that the observer will be somewhat faster than the system being ob-

served. The upper limit to the observer's speed is restricted by how

much noise there is on the measurements and by how well the system has

been modeled, e.g., have any inputs been ignored. This limit can be

determined by simulation, or perhaps some optimizing technique could be

developed. Very little information has been found in the literature tn

aid in the choice of the pole locations.

l
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III. SYSTEM DESCRIPTION AND SIMULATION

The system that is to be studied in this paper is, in general, the

MATCALS control system. This control system is used in the automatic

landing of aircraft. The system consists of three basic parts: the air-

craft itself, the radar unit, and the controlling unit. During the opera-

tion of this control system, the radar unit measures the approximate

vertical and lateral positions of the aircraft, which are then transmitted

to the land-based controlling unit. From these approximations the con-

trolling unit calculates appropriate bank and pitch commands. These com-

mands are then transmitted to the aircraft autopilots, which in turn cause

the aircraft to respond accordingly. A diagram showing this operation of

the MATCALS comtrol system is given in Figure 3-1. A detailed discussion

of the MATCALS control system is given in Reference [10].

To fa , iitate the study of the MATCALS control system, FORTRAN IV

programs have been developed at Auburn University to simulate the system.

Two simulation programs are available: one for the F4J aircraft control

system, and one for the AE7 aircraft control system [9]. In both of these

simulations, the control system is divided into two uncoupled subsystems,

i.e., a lateral control system and a vertical control systam. The study

that is to be carried out in this paper will be accomplished through the

use of one of these control system simulation programs. Of the four pro-

grams available, the program for the lateral control system of the F4J

21
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i aircraft was selected. A description of this lateral control system and

its simulation program will now be given. A listing of the simulation

program is given in the appendix.

The F4J Aircraft's Lateral Control System

A general description of the lateral control system of the F4J air-

craft and the simulation of this system is obtained from the block diagram

given in Figure 3-2. From this diagram, it is seen that the control sys-

tem is modeled as a sampled-data system containing a digital filter. In

this model, the continuous part of the system is the aircraft lateral

system, and the digital filter is the controlling unit. The sampling ef-

fect of this system is modeled in the radar unit. Even though this con-

trol system and its simulation program are constructed to be able to

operate at various sampling rates, the work presented in this paper will

be accomplished with the sampling period T set to 0.1 seconds. A more

involved description of this lateral control system, and how it is simu-

lated, will now be provided through a discussion of the three parts of

the block diagram given in Figure 3-2.

F4J Aircraft's Lateral System

The dynamics of the F4J aircraft's lateral airframe are described by

a sixth order linear differential equation. This differential equation is

presented in Reference [9]. As is shown in this reference, the six states

of this differential equation represent six physical variables of the air-

craft's lateral airframe. These variables are listed below along with

their respective symbols.

23
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Figure 3-2. Block Diagram of F4J Aircraft Lateral Control System.
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I
t)- roll angle perturbation

,,(t) - yaw angle perturbation

AO(t) - perturbation in the angle of side slip

Ap~t) - perturbation in the angle of the x-axis

Ar(t) - perturbation in the angle of the z-axis

q(t) - lateral distance from the extended centerline
of the runway

To complete the description of the F4J aircraft lateral dynamics,

the autopilot dynamics must be combined with the dynamics of the aircraft's

lateral airframe. The autopilot dynamics are described by a third order

nonlinear differential equation [9]. The three nonlinearities of the

autopilot are of the limiter type. Therefore, the complete description

of the F4J aircraft's lateral dynamics is given by a ninth order nonlinear

differential equation. This description is expressed in a continuous

state matrix equation of the form

X(t) = Ax(t) + Bu(t) + Ef(t) (3-1)

where

x(t) is the 9xl state vector

u(t) is the 2xl input vector

f(t) is the 3xl nonlinearity vector

A is the 9x9 system matrix

B is the 9x2 input distribution matrix

E is the 9x3 nonlinearity distribution matrix

These vectors and matrices will now be de.scribed as they are found in the

simulation.
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The state vector. As is mentioned above, six of the nine states of

the state vector x(t) represent physical variables of the aircraft's

lateral airframe. The remaining three states are contributed by the

autopilot and represent no physical variables. The following vector gives

the assignment of the states in the simulation program.

xl(t) A6(t)

x2(t) A(t)

x3(t) A(t) Airframe States

x4 (t) Ap(t)

x(t) x 5 (t) = Ar(t) (3-2)

x6(t) q(t)

x7(t) x7 (t)

x8(t) x8(t) Autopilot States

x9 (t) x9 (t)

The input vector. There are two inputs to the F4J aircraft lateral

system. These inputs are the bank command input 0(t) and the wind input

w(t). The positions of these two inputs in the input vector u(t) are

u(t) = (3-3)

W(t)

The bank command input is produced by the controlling unit; therefore it

is known. The wind input, on the other hand, is not known. This input is

modeled in the control system simulation program by a random number gener-

ator.

The nonlinearity vector. The vector f t) describes the nonlinearities

that are contained in the aircraft lateral autopilot. This vector is

26
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f(t) = f2(t) (3-4)If3(t)j I

The three nonlinear functions fl(t), f2(t), and f3 (t) are given in Table

3-1.

The matrices. The matrices A, B, and E of the state equation, (3-1),

that describes the F4J aircraft lateral dynamics are presented in Table

3-2.

To model the continuous F4J aircraft lateral system in the simula-

tion program, an integration algorithm is required. This algorithm is the

fourth-order Runge-Kutter integration procedure. This procedure is de-

scribed in Reference DI, and is given in the simulation listing in

Appendix D.

Radar Unit

The radar unit used in the lateral control system of the F4J air-

craft is the AN/TPN-22 phased array radar [12]. The purpose of this radar

unit is to periodically determine the aircraft's lateral position. Unfor-

tunately, in the process of determining the lateral position, a signifi-

I cant amount of noise is produced. The combination of this noise and the

aircraft's sampled lateral position forms the radar output signal.

The description of the simulation of this radar unit will now be

I presented. This description will be given in three steps. First it will

be shown how the lateral position of the aircraft is obtained from the

Isimulation of the aircraft lateral dynamics. Next the effects of sampling

f 27
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Table 3-1.

Nonlinear Functions.

14.0 if *(t) > 14.0

f1(t) f(t) if I,(t)L< 14.0

14.0 if f(t) <-14.0

let

n(t) = 171.9*xl(t) + 68.76*x4 (t) - 3.0*fl(t)

7.5 if n(t) > 7.5

f2 (t) n(t) if In(t)j< 7.5

-7.5 if n(t) <-7.5

let

m(t) - 80.4631*x1(t) - 18.0533*x 3(t) + 53.7988*x4 (t)

+ 150.2088*x5 (t) - 0.0173*x7 (t) - 1.25*x8 (t)
+ 1.268*x9(t) - 18.0533*w(t) + 0.67*f 2 (t)

5.0 if m(t) > 5.0 1
f3(t) m(t) if Im(t)I< 5.0 1

-5.0 if ne(t) <-5.0
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The lateral position is obtained from the state equation descrip-

tion of the F4 aircraft lateral dynamics through the use of the output

matrix equation

y(t) = C-x(t) (3-5)

This matrix equation will give the desired output if all the elements of

the 1x9 output matrix C are zero except the (1, 6) element, which must

be unity. This is seen by examining the state vector x(t), in (3-2).

The effect of sampling the aircraft lateral position is simulated

by testing the signal y(t) of (3-5) every sampling period. As is seen

in the block diagram of Figure 3-2 this sampled lateral position signal

is the digital signal y(k). It is this signal that is corrupted by the

radar noise.

a The simulation of the AN/TPN-22 radar noise is illustrated in Fig-

ure 3-3 [12]. As is shown in this illustration, the noise is added to the

eaircraft's lateral angle. This lateral angle is the angle between the

centerline of the runway and the projected line between the aircraft

and the touchdown point. The lateral angle ta(k) is calculated by

t ta(k) = tan 1 y6. + 178 (3-6)

The variable r(k) is the range of the aircraft from the touchdown point;

this is assumed to be known. The values 178.1 and 762.8 are the lateral

position and range of the radar unit in respect to the touchdown point.
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The noise is then added to this angle ta(k) and the measured angle ma(k)

is obtained. The measured angle is transformed into the radar unit's

output signal YR(k) by

YR(k) = [r(k) + 762.9] tan [ma(k)] - 178.1 (3-7)

Controlling Unit

The controlling unit of the aircraft lateral control system is the

SPN-42 digital controller. This controller is basically a digital PID

(proportional plus integral plus derivative) type controller. The devel-

opment of the SPN-42 digital controller is described in detail in Refer-

ence [12]. The basic forn of the controlling unit is given in the block

diagram of Figure 3-4. The four a filters are first-order low-pass

digital filters used to reduce the effects of high frequency noise. The

tracking a-B filter is a second-order digital filter used to determine

estimates of the aircraft's lateral position and lateral velocity from

the noisy lateral position radar signal. These estimates, y(k) and (k),

are then passed on to the remainder of the controlling unit where the

bank command t(k) is calculated.

The simulation of the controlling unit is obtained from the signal

flow graph of the SPN-42 digital controller given in Figure 3-5 [12].

This flow graph includes five nonlinearities that are present in the fil-

ter, but were omitted in the block diagram of Figure 3-4. Four of these

nonlinearities are of the limiter type and the fifth is a floating limiter.

A floating limiter is a discrete nonlinearity that limits the amount of

change that can occur in one sampling period.
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Since the controlling unit of the lateral control system is a digi-

tal device, it processes information only at given instants of time.

These instants are synchronized with the sampler modeled in the radar

unit and have a time duration that is very short with respect to the

length of the sampling period. For this reason, the process of sampling

the aircraft lateral position to the outputting of the bank command is

modeled with no time delay in the simulation.

As is shown in Figure 3-2, the output of the controlling unit is

fed into a zero-order hold. The purpose of the zero-order hold is to

take the digital bank command signal 4(k) and convert it to the analog

bank command signal (t). A discussion of the operation of a zero-order

hold is given in Reference [13]. The conversion of b(k) to i(t) is simu-

lated by holding the controlling unit output constant for the duration

of each sampling period.

Comment on the Random Number Generators

Three random number generators are used in the control system's

simulation program. Two are used in the generation of the radar noise

and the other in the generation of the wind input. These random number

generators possess the ability of repetition, i.e., these random number

generators can produce the exact same sequence of random numbers as many

times as is needed. With this ability of repetition, the effects of

changing portions of the aircraft lateral control system can be studied.

This ability will be used in the work presented in Chapter V.
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IV. DESIGNING AN OBSERVER

In this chapter an observer will be designed for use in the lateral

control system of the F4J aircraft. The observer will be used as a sub-

stitute for the tracking a-a filter that is presently being employed.

Recall that the tracking c-s filter is used to determine estimates of the

lateral position and the lateral velocity of the aircraft from the noisy

lateral position radar signal. Therefore the observer will not be de-

signed, as discussed in Chapter II, to reconstruct the aircraft's lateral

system state vector, but will be designed to estimate only the aircraft's

lateral position and lateral velocity. Block diagrams showing how the

t-B filter will be replaced by an observer are given in Figure 4-1 and

Figure 4-2.

Equivalent Discrete Reduced Order System
I

As mentioned above, the function of the observer is to estimate the

F4J aircraft's lateral position and lateral velocity. It can be argued

that to fulfill this function it is not necessary to construct an ob-

server for the full nine orders of the aircraft lateral system described

in Chapter III. Based on this argument a reduced order sys:c'. will be

developed that can be used in the observer design process as a replacement

for the F4J aircraft lateral system. The use of this reduced order sys-

tem will lessen the difficulties associated with the design of an observer

for a high order system. Care will be taken when developing this reduced

1' 37
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order system such that the aircraft's lateral position and lateral veloc-

ity are represented in this developed system's state vector.

Once a more manageable system model is developed, it will then be

necessary to develop an equivalent discrete model for this reduced order

system. This discrete model will be obtained through the use of a pro-

cedure that preserves the natural states of the system. Therefore if

the aircraft's lateral position and lateral velocity are represented by

states in the reduced order system, then they will have the same state

representation in the equivalent discrete system. After this discrete

system model has been developed, it is then possible to design an ob-

server.

Reduced Order System

The problem of creating a reduced order system to represent a high-

order system can be approached in a number of ways. In this paper the

desired reduced order system was found by matching frequency responses.

The frequency response of a low order system will be matched to the fre-

quency response of the F4J aircraft lateral system.

The aircraft's lateral system frequency response, from bank command

input 0(t) to lateral position output y(t), is computed from a linearized

version of the ninth-order state equations given in Chapter III. The

most significant portion of this frequency response, that of omega from

0.2 to 2.0, is given in the Bode plot of Figure 4-3. After examining

this Bode plot, it was decided that this frequency response could be

matched by a third-order system. Through the process of trial and error,
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a third order system was found that could be used for the desired pur-

pose. A set of continuous state matrix equations of this created system

is given in (4-1) and (4-2).E i(t) [ 0.0 1.0 0.0 1x i(t)1 . 41

M = 0.0 0.0 1.0 x2(t) + 0.0 ,(t)

3 (t)J[ 0.0 0.0 -1.42222 x3 (t)J 0.709966J

y(t) -[l.O 0.0 0.0] [xl(t) 1
x2(t) (4-2)

Lx3(t)

The frequency response of this third-order system is given in the

Bode plot of Figure 4-4. Comparing this frequency response with that of

the lateral system given in Figure 4-3, it is concluded that the third

order system of (4-1) and (4-2) can be used in the observer design pro-

cess with small error.

To ensure that the aircraft's lateral position and lateral velocity

are represented in the state vector of the reduced order system, a study

of this system's state equations will be made. Expanding the equations

of (4-1) and (4-2) by matrix multiplication procedures will give the fol- --

lowing four differential equations -

iM(t) = d xlM = x (4-3)

(t) = d x = (4-4)

x3(t) = d x3 (t) = -l.42222*x3 (t) + 0.709966*o(t) (4-5)

y(t) = xl (t) (4-6)
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Since it is known that the output y(t) represents the aircraft's lateral

position in the reduced order system, then by (4-6) it is seen that the

state x1(t) must represent the aircraft lateral position. Given this

fact, and the fact that the derivative of position with respect to time

is velocity, equation (4-3) shows that the state x2(t) must represent

the lateral velocity of the aircraft. Therefore, the aircraft's lateral

position and lateral velocity are represented in the state vector of the

reduced order system.

To reduce confusion, the continuous state matrix equations, given

in (4-1) and (4-2), will be referred to and used as the description of

the F4J aircraft lateral system. This will be done until the observer

is designed. But it should be noted that the full ninth-order system,

with the three nonlinearities and the wind input described in Chapter

III, will be used in all simulation runs discussed in the following

chapter.

Equivalent Discrete System

In this section, an equivalent discrete model will be developed

for the F4J aircraft lateral system. This discrete model will describe

the aircraft lateral system combined with the sampler, which is modeled

in the radar unit, and the zero-order hold. Therefore the input and the

output of this discrete system model will be the digital bank command

signal 0(k) and the sampled lateral position signal y(k), respectively.

The method that is to be used to develop the aircraft lateral sys-

tem's equivalent discrete model is found in Reference [13]. A BASIC

program based on this method is listed in Appendix C. Using this program
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I
an equivalent discrete model for the F4J aircraft's continuous lateral

I system of (4-1) and (4-2) is developed. This discrete model is given in

fthe following state equations.

x [x(k+l)1 [1.0 0.1 0.00477116 x (k)1 0.0001142371

x 2 s(k+) 0.0 1.0 0.0932144 x2(k) + 0.00338736 (k)

Lxk+l 0.0 0.0 0.867429 x (k) IL 0.0661790 J

y(k) =[1.0 0.0 0.0] [x 1(k)]

1X2 (k) I(4-8)

Lx (k)J

As was mentioned earlier, this equivalent discrete system was de-

veloped through the use of a method that preserves the natural states of

the system. Therefore, since the states xi(t) and x2(t) of the contin-

uous system, (4-1) and (4-2), represent the lateral position and the

lateral velocity, respectively, of the aircraft, then the states x(k)

and x (k) of discrete system (4-7) and (4-8) will also represent these

same physical variables.

In the next section, an observer will be designed for the discrete

Ithird order system given in (4-7) and (4-8). During the design process

it will become imperative that the location of this system's poles be

known. These pole locations will be determined here.

[The poles of a system can be found by evaluating the roots of the

characteristic polynomial a(z) of that system. The characteristic poly-

nomial of a system can be found by expanding the following determinate,

' t(z) = l[zI - All (4-9)

where the matrix A i the system matrix.
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Following this procedure, the pole locations of the F4J aircraft's

equivalent discrete lateral system will be found. By substituting the A

matrix from (4-7) into (4-9) the characteristic polynomial is obtained.

z-1.0 -0.1 -0.00477116'

a(z) = 0.0 z-1.0 -0.0937144

0 0.0 z-0.867429 J
= [(z-l .0)(z-l.0)(z-0.867429)]

From this polynomial, the roots, and therefore the pole locations, are

apparent. These pole locations are 1.0, 1.0, 0.867429 in the z-plane.

Observer Design

The function of the observer is to extract from the noisy lateral

position radar signal tolerable estimations of the F4J aircraft's lateral

position and lateral velocity, for use as inputs to the controller. To

obtain an observer to fulfill this function, the observer will be de-

signed for the third order system given in (4-7) and (4-8). This third

order system is being used to simplify the observer design process; and

more importantly, it is being used because the states xM(k) and x2 (k) of

this system are accurate approximations of the lateral position and the

lateral velocity if the aircraft. Therefore, the state estimations,

x1 (k) and x2(k), of the observer designed for this system can be used as

the inputs to the controller.

System Observab I ity

Prior to the design of an observer for the aircraft lateral system,

it would be prudent to show that this system is observable. This system
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I
will be shown to be observable by establishing that its observability

Imatrix is nonsingular. Note that a matrix is nonsingular if the value of

its determinant is nonzero. Recalling the form a~ver in (2-7), the ob-

servability matrix e for the aircraft's lateral system, given in (4-7)

and (4-8), is found to be

1.0 0.0 0.0

S1.0 0. 0.00477116 (4-11)

1.0 0.2 0.0182312

The value of this matrix's determinant is computed and is found to be

nonzero. Therefore the system of (4-7) and (4-8) is observable.

Design Process

Of the various observer designs discussed in Chapter I, the one

that should best function as an estimator of the aircraft lateral position

and lateral velocity is the full order observer developed by Franklin and

Powell. This observer design was chosen for use over both the reduced-

order observer design and the Tse-Athens observer design. The reduced

I order observer, also developed by Franklin and Powell, cannot be used in

the F4J aircraft lateral control system because it was discovered that

i this lower order observer could not effectively handle the noise that is

contained in the radar lateral position signal. The Tse-Athens observer

was also eliminated for possible use in the control system because there

seemed no feasible method of obtaining the required initial values of the

aircraft state vector. Therefore, the observer that is to be designed

Ihere, and used in the comparison simulation runs of the next chdpter,

will be a Franklin-Powell full order observer.
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The process of designing a Franklin-Powell full order observer will

be started by analyzing the state matrix equation of this observer, given

in (2-23),

x(k+l) = [A-LC]x(k) + Bu(k) + Ly(k) (2-23)

As was discussed in Chapter II, the matrices A, B, and C of this state

equation are obtained from the state equations of the system that is to

be observed. For this particular process, these matrices will be found

in (4-7) and (4-8).

The two vectors, u(k) and y(k), of equation (2-23) are the inputs

to the observer. For the observer being designed here, these two input

vectors can be determined by examining the block diagram of Figure 4-2.

From this diagram, it is seen that the input vector y(k) will be the

radar's lateral position signal YR(k), and the input vector u(k) will be

the bank command signal ¢(k). After the simulation runs presented in

Chapter V were completed, it was discovered that inadvertently 0(k-l) was

used. Fortunately this error was found not to cause any noticeable dif-

ference in the results obtained.

The only unknown of the observer state equation, (2-23), is the

gain matrix L. Recall from Chapter II that this matrix can be calculated

if the locations of the observer poles are known. Therefore, the next

step to be taken in this design process is the selection of the pole

locations for the observer.

To assist in the selection of proper pole locations for the full

order observer, two arguments will now be presented that will provide a

description of the desired dynamics of the observer. By knowing the
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observer's dynamics, a vague region in the complex z-plane will be out-

Ilined. It is within this region that this observer poles should be placed.

I thnThe first argument is that the observer dynamics should be "faster"

than the dynamics of the F4J aircraft lateral system. The reasoning be-

hind this argument can be found in the discussion of the full order ob-

server error given in Chapter II. As was shown in that discussion, the

error vector i(k) should converge to zero. This can be accomplished by

making the error dynamics, determined from the matrix [A-LC], "faster"

than the dynamics of the system that is being observed. It should be

noted that the observer dynamics and the error dynamics are equal. There-

fore, the observer dynamics should be "faster" than the aircraft's lateral

system dynamics so that the error will tend to vanish.

The second argument is based on the noise that is contained in the

radar lateral position signal. There is such a significant amount of

noise in this signal that caution should be taken in the determination of

how "fast" the observer dynamics should be made. Large errors will be

created in the state estimations if the observer dynamics are so "fast"

j that the observer reacts more to the noise than to the lateral movements

' of the aircraft. Therefore, according to this argument, the observer's

dynamics should be "slow", so that there is no overreaction to the radar

noise.

Combining these two arguments, a description of the observer's de-

sired dynamics can be derived. The dynamics of the observer should be

only slightly "faster" than the F4J aircraft's lateral system dynamics.

From this description and by noting the relationship between a system's

dynamics and the location of its poles in the complex z-plane, the
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observer pole locations can be selected. This relationship states that

the closer to the z-plane origin that a system's poles are located, the

"faster" the system's dynamics will become. Therefore, the full order

observer poles must be placed closer to the z-plane origin than those

poles of the aircraft lateral system, but not so close that the noise

will dominate.

As was found in the previous section, the three poles of the F4J

aircraft lateral system, (4-7) and (4-8), are located at 1.0, 1.0,

0.867429 in the z-plane. Hence the pole locations of the full order ob-

server are selected to be at 0.8, 0.8, 0.8 in the z-plane. As can be

seen, all three poles are chosen to be closer to the z-plane origin than

any pole of the aircraft lateral system.

Now that the location of the observer's poles have been selected,

the unknown gain matrix L can be computed. Using the BASIC computer pro-

gram of Ackermann's Formula, given in Appendix B, the L matrix for this

full order observer is obtained.

0.467428

L = 0.57863 (4-12)

0.0353145

Substituting this gain matrix L, and the matrices A, B, and C for (4-7)

and (4-8), into their respective positions of the state equation (2-23)

results in state matrix equation for the full order observer.
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x (k+1) 0.532572 0.1 0.004771161 x1 (k)

i[2 (k+) = -0.57863 1.0 0.0432144 x2(k)

x3(k+1) -0.0353145 0.0 0.867424 x3(k)

0.000423r0.4674281
+ 0.00338736 O(k) + 0.57863 yR(k) (4-13)

0.0661740 ] LO.03531451

This observer will now be used as a substitute for the tracking a-B

filter in the F4 aircraft's lateral control system. To study the effects

of this substitution, a supplement to the control system's simulation pro-

gram, listed in Appendix D, was written for the observer's state equation

of (4-13).
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V. RESULTS

The possibility of using the observer of (4-13) as a substitute for

the tracking a-s filter in the F4J aircraft lateral control system is in-

vestigated in this chapter. This investigation will be accomplished in

two steps. First the acceptability of the observer as a substitute for

the a-$ filter will be shown. Second the performance of the observer

when used in the lateral control system will be judged. These steps will

be executed by comparing responses of the control system with the a-a

filter used to estimate the aircraft lateral position and lateral velo-

city, to similar responses of the control system with the observer used

to produce the estimations. Block diagrams of these control systems were

given in Figure 4-1 and Figure 4-2. For the remainder of this discussion

these two lateral control systems will be referred to as the a-s filter

control system and the observer control system. The responses of these

systems, that are to be presented here, were obtained through the use of

the system simulation as described in Chapter III. Also in this chapter,

a technique for selecting other pole locations for an observer used in

the lateral control system is developed.

Observer Acceptability

The acceptability of the observer given in (4-13) as a substitute

for the tracking a-B filter will be shown through a comparison of two

sets of responses of the a-9 filter control system and the observer
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control system. These responses will be the open-loop frequency response,

and the tiwi response of the system with a given initial condition. From

these responses, basic system characteristics can be determined that will

be used in the comparison. These characteristics for both control sys-

tems are given in Table 5-1. The responses and the characteristics of

the a-8 filter control system are assumed to be satisfactory for the

lateral control system in the context of this paper. Therefore, if the

responses and the characteristics of the observer control system compare

favorably to those of the a-$ filter control system, then the observer

of (4-13) will be considered to be an acceptable substitute for the track-

ing a-$ filter. A brief discussion of the responses and how the system

characteristics were determined from the responses is given below.

Open-Loop Frequency Response

The open-loop frequency responses of the a-e filter control system

and the observer control system are given in the Bode plots of Figure 5-1

and Figure 5-2. These frequency responses were computed from linearized

models of the lateral control system. A comparison of these plots shows

that the open-loop frequency responses of the two systems are fairly

similar.

The stability margins of the two systems are determined from the

open-loop frequency responses shown in Figure 5-1 and Figure 5-2. The

gain margin, i.e., the amount that the gain must be increased to cause

the system to become unstable, is determined by noting the magnitude of

the system's gain when the phase angle is -1800. The phase margin, i.e.,

the amount of phase lag that must be added to the system to cause in-

stability, is equal to the phase angle of the system at unity gain, plus
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Table 5-1.

System Characteristics.

ci-B Filter Observer

Control Control
System System

r _________________________________

Gain Margin, GM 15 12
(dB)

Phase Margin, PM 49 46
(degrees)

Time to Rise, Tr 8 8
(seconds)

Time to Peak, Tp 17 17
(seconds)

Time to Settle, Ts 52 53
(seconds)

Percent Overshoot, P.O. 40 44
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1800. As can be seen from Table 5-1. these characteristics of the two

lateral control systems compare favorably.

Time Response with a Given Initial Condition

The initial-condition time responses of the a-$ filter control sys-

tem and the observer control system are given in Figure 5-3 and Figure

5-4. These time responses are from simulation runs of the last sixty

seconds of the aircraft's flight before touchdown. Prior to these final

sixty seconds, the aircraft is assumed to be twenty feet laterally off

the extended centerline of the runway, with no lateral movements. The

forward velocity of the aircraft is considered to be a constant of 220.39

feet per second. The wind and the radar noise disturbances have been

eliminated in these simulation runs. As can be seen by comparing Figure

5-3 and Figure 5-4, the time responses of the two lateral control systems,

with a given initial condition, are almost identical.

The system characteristics determined from the initial-condition

time responses are the final four characteristics given in Table 5-1. 1
The time to rise and the time to peak characteristics give a measure of

the speed of the system response. These characteristics are defined as I
the time the aircraft requires to reach the runway's extended centerline,

and the time needed to reach its first peak, respectively. The time to

settle and the percent overshoot characteristics give a measurement as to

how well the lateral control systems guide the aircraft. The time to

settle is determined by determining the amount of time necessary for the

system to settle the aircraft within 2% of its initial condition of 20

feet. The percent overshoot is calculated by
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I
P.O. = Peak x 100% (5-1)I.C.

where Peak is the magnitude of the first peak of the time response, andI
I.C. is the magnitude of the initial condition. Note that the four sets

of system characteristics given are quite similar.

Therefore, by the comparison of the two sets of responses, along

with the associated system characteristics, it is assumed here that the

observer given in (4-13) is an acceptable substitute for the tracking

a-B filter in the F4J aircraft lateral control system.

Observer Performance

The performance of the observer of (4-13) when used in the lateral

control system of the F4J aircraft will now be judged. This judgement

will be based on the results of a number of Monte Carlo runs of the ob-

server control system as compared to results of similar runs of the a-B

filter control system. After these comparisons have been made, an inves-

tigation will be presented to show why the observer control system per-

formed differently from the a-B filter control system.

Monte Carlo Runs

Monte Carlo runs are used in this paper to give statistical measure-

ments to the performance of the two lateral control systems. Each of the

Monte Carlo runs that are to be presented were determined from twenty

simulation runs. Each of these simulation runs are of the last sixty

seconds of the aircraft's flight before touchdown. Prior to the start of

each simulation run the aircraft is assumed to be in lateral steady-state

flight, with a forward velocity of 220.39 feet per second, along the
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centerline of the runway. All lateral movements of the aircraft during

the simulation runs are caused by the wind and/or the radar noise. For

each of the twenty simulation runs, the three random number generators

of the wind input and the radar noise input were forced to generate com-

pletely different sequences of random numbers. But, it should be noted

that each Monte Carlo run used identical sets of random number sequences.

The results of the Monte Carlo runs of the two control systems,

with various combinations of wind and radar noise, are listed in Table

5-2. The results presented in this table are the average values and the

r.m.s. values of the aircraft's lateral position error off the extended

centerline of the runway, over the twenty simulation runs. More impor-

tance is given to the r.m.s. values than the average values, since in

calculating the average values a large position error to one side of the

centerline could be compensated for by a large position error to the

other side of the centerline. A list of the percent improvement of the

observer control system over the a-s filter control system is also given.

This percent improvement was calculated by

(RF - RO)
% Improvement = L(RF + R0)/2J x 100% (5-2)

where RF and R0 are the r.m.s. values of the a-a filter control system

and the observer control system respectively.

The results in Table 5-2 indicates that the observer control system

reduces the effects of the radar noise disturbance on the controlling of

the lateral movements of the aircraft better than does the a-B filter

control system. The reverse is true, on a smaller scale, with respect

to the wind distrubances. With both of the disturbances included, it is
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seen that the observer control system gives better results than the a-s

filter control system. Therefore, from these results the observer of

(4-13) is judged to give a better performance when used in the lateral

control system of the F4J aircraft than the tracking c-a filter that is

presently being employed. An investigation of why and how the observer

control system gives better results will now be discussed.

Closed-Loop Frequency Response

A possible reason for the observer control system to perform better

than the a-8 filter control system, with respect to the radar noise, can

be determined from an examination of the closed-loop frequency responses

of the two lateral control systems. The closed-loop frequency responses

of the a-a filter control system and the observer control system, from

the radar noise input to the lateral position output, are given in the

Bode plots of Figure 5-5 and Figure 5-6. These frequency responses were

computed from linearized versions of the lateral control systems.

The -3dB bandwidths of the lateral control systems are determined

from the closed-loop frequency responses. The a.-8 filter control system

bandwidth is found to be 0.77 radians/second while the bandwidth of the

observer control system is determined to be 0.68 radians/second. Since

the observer control system has a narrower bandwidth, the time response

of this control system will be slower than the time response of the a-a

filter control system. In other words, the observer control system is

less sensitive to the radar noise disturbance than is the a-B filter con-

trol system.
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Simulation Runs

It has been shown that the observer control system achieved a bet-

; J ter performance than the a-a filter control system when both the effects

of the wind and the radar noise are included. The ensuing discussion

I will attempt to explain the observer control system's better performance

through detailed examinations of comparable simulation runs of the two

V | lateral control systems. These simulation runs are taken from the twenty

J ]simulation runs used in the Monte Carlo analysis. It should be noted

that identical wind and radar noise disturbances were used in both simu-

I lation runs.

The results of the examination of the two lateral control system

simulation runs are illustrated in the time responses given in Figure 5-7

I through Figure 5-11. The responses of the two simulation runs are given

in Figure 5-7. The improvement in the control of the aircraft when the

I observer is used to estimate the aircraft's lateral position and lateral

velocity is shown in a comparison of the two responses.

Shown in Figure 5-8 is a comparison of the actual lateral position

of the aircraft to the estimates of this position, that were produced by

the observer and the a-B filter. These responses were obtained from the

simulation run of the observer control system. Figure 5-9 shows a simi-

lar comparison, except that these responses were obtained from the simu-

lation run of the a-B control system. From these two figures, it can be

seen that the observer and the a-B filter estimate the aircraft's lateral

position to an approximately equal quality. Hence the improvement in
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the performance that the observer control system has over the a-B filter

I control system is not obtained from the estimation of the aircraft's

j lateral position.

A similar examination of the aircraft's lateral velocity, and it's

J estimates, is given in Figure 5-10 and Figure 5-11. As is shown in these

figures, the observer estimates the lateral velocity more accurately than

I the a-B filter. Therefore, the improvement in the performance that the

Jobserver control system has over the a-B filter control system is con-

cluded to be obtained from the estimation of the aircraft's lateral

I velocity.

Selecting Other Observer Pole Locations

A technique to select other pole locations for an observer used in

i the lateral control system of the F4J aircraft is presented in this sec-

J tion. This technique will select the location of the observer's poles by

determining a gain matrix that will reduce the effects of the radar noise

i on the estimates of the aircraft's lateral position and lateral velocity.

But before this technique can be presented, the observer developed in

Chapter IV must be corrected.

I Recall that the error in the simulation of the observer, given in

(4-13), is that the bank command input is delayed by one sampling period

with respect to the remainder of the observer. To correct this error,

a delayed version of the observer equation must be used. The form of

this delayed observer state matrix equation will be

[ x(k) = [A-LC]x(k-I) + Bt(k-l) + LYR(k-l) (5-3)
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The matrices A, B, C, and L are as they were described in Chapter IV and

the inputs *(k-l) and YR(k-l) are the delayed bank command and the lateral Ail

position radar signals. This corrected observer is illustrated in the

block diagram of Figure 5-12. With the observer corrected, the develop-

ment of the technique of selecting other pole locations can be continued.

To determine a gain matrix that will reduce the effects of the

radar noise, the transfer functions of the system shown in Figure 5-12 .i

will be developed and examined. These transfer functions will be from

the bank command and radar noise inputs to the estimated lateral position

and lateral velocity outputs. These four transfer functions will be de-

veloped from the corrected observer state matrix equation, which has the

form shown in (5-3), and the aircraft's reduced order-discrete model I

state matrix equations given in (4-7) and (4-8). The form of these dis-

crete state equations are

x(k+l) = Ax(k) + BO(k) (5-4)

y(k) Cx(k) (5-5)

In addition, two output equations are needed for the observer. These I
will be

y(k) = Hlx(k) (5-6)

j'(k) = H2x1(k) (5-7)

The matrices H1 and H2 are 3xl output matrices, where all the elements

are zero except the (1, 1) element of H1 and the (2, 1) element of H2,

which are unity.

To obtain the desired transfer functions, the five difference ma-

trix equations, (5-3) through (5-7), must be transformed into matrix :1
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equations in the z-domain. The z-transform method is discussed in great

detail in most text books that deal with discrete systems, for example

References [13] and [ 6]. It is important to note that after the equa-

tions have been transformed it will be possible to manipulate them using

matrix algebra. The z-transform of the five difference equations are

given below. These equations are arranged in the same order that the

respective difference equations are presented in this section.

X(z) = [A-LC]z-lR(z) + Bz-lo(z) + Lz-YR (z) (5-8)

zx(z) = AX(z) + Bo(z) (5-9)

Y(z) = CX(z) (5-10)

Y(z) = HIX(z) (5-11)

Y(z) = H21(z) (5-12)

The matrices in these z-domain equations are identical to their counter-

part in the difference equations.

From equation (5-8), a solution for the vector X(z) can be deter-

mined. Manipulating (5-8) gives

i(z) = [zI-A+LC]-1 {Bo(z)+LYR(z)} (5-13)

In a similar manner, a solution for the vector X(z) can be obtained

X(z) = [zI-A] 1 Bo(z) (5-14)

The matrix I in these two equations is the identity matrix, and the

notation [.]-I symbolizes the inverse matrix operation.

The process of determining the transfer functions would be simpli-

fied if an equation for YR(z) is developed. YR(z) is the z-transform of
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I

the radar output signal YR(k). This signal is seen, in Figure 5-12, to

be the sum of the aircraft's lateral position signal y(k) and the radar

f noise v(k). Hence an equation for YR(z) is

Y R(z) = Y(z) + V(z) (5-15)

A useful solution can now be developed for the vector X(z). Manip-

ulating equations (5-13), (5-10), (5-14), and (5-15) in the proper manner

will result in

!(z) = [zI-A+LC- 1 {B (z) + LC[zI-A-I B1(z) + LV(z)} (5-16)

Manipulating (5-16) further yields

i(z) = [zI-A+LC]-1 {(I+LC[zI-A' 1 )BP(z) + LV(z)}

2X(z) = [zI-A+LC]I 1{([zI-A]+LC)[z-A]' B(z) + LV(z)}

i(z) = [zI-A]'1 B¢(z) + [zI-A+LC]- LV(z)

I With this solution of X(z) and equations (5-11) and (5-12), the four

desired transfer functions can be stated in matrix form.

I Y(z)/,(z) = HI[zI-A]-I8 (5-18)

I Y(z)/V(z) = HI[zI-A+LC]I L (5-19)

Y(z)/(z) = H2[zI-A]-
1 B (5-20)

Y(z)/V(z) = H2[zI-A+LC]IL (5-21)

Now that the desired transfer functions have been developed, a gain

matrix L can be determined that will reduce the effects of the rad."r noise

on the estimates of the aircraft's lateral position and lateral vc -ity.
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It should be noted from these transfer functions, that the responses of

the estimates to the bank command should not change with the changing of

the gain matrix.

Results Using Pole Selection Technique

A single attempt was made to use the technique described above, to

design an observer for use in the F4J aircraft lateral control system.

In this attempt, a gain matrix was chosen that should completely elimi-

nate the effects of the radar noise from the estimate of the aircraft's

lateral velocity. This gain matrix is

0.2

L = 0.0 (5-22)

L0.0

The last two elements of this matrix are chosen to be zero to force the

transfer function, from radar noise input to estimated lateral po:ition

output, to zero. Once these elements are selected, the first element

can be selected. This element was chosen to be 0.2 in an attempt to make

the observer's dynamics "faster" than the reduced order system's dynamics.

An observer was built with this gain matrix and placed in the lateral

control system.

To determine the performance of this new observer, a 'nte Carl

run was made. In this Monte Carlo run both the wind and ra.iar St'

turbances were included. Unfortunately, the res,:-

run showed that this new observer Derr"p' o, .

filter. These resjl-s ara -.....
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I
I

A possible explanation for the poor performance of the new observer

I can be obtained from an examination of the pole locations of this obser-

g ver. The location of this observer's poles are determined to be 0.8, 1.0,

0.867429 in the z-plane. Comparing these pole locations to the reduced

order system's pole locations, given in Chapber IV, shows that the two

sets of pole locations are very similar. Therefore, the dynamics of the

observer, with the gain matrix given in (5-22), might not be "fast"

enough to reduce the error.

II

I
I
I
I

I •
I

-w'
I
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I

VI. CONCLUSION

An observer was designed and implemented in the simulation of the

F4J aircraft lateral control system. The results obtained from this im-

plementation, given in Chapter V, demonstrate that it is possible to

improve this control system's performance through the use of an observer.
The vertical control system of the F4J aircraft is structurally identical !

to the lateral control system, and the F4J aircraft control system is 1

typical of the aircraft control systems of the MATCALS control system.

Hence, it can be concluded that the performance of the MATCALS control

system may possibly be improved through the use of observers.

Further improvements in the performance of the F4J aircraft lateral A
control system may be achieved by using a more refined observer design.

The observer design can be refined in two ways. First a higher order

system can be used in the observer design process which represents the

aircraft's lateral dynamics better than the third order system used in

Chapter IV. The other refinement is that better pole locations can be '|
selected for the observer. This selection can be made by trial and error

or by the technique described in Chapter V.
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I
The development of Ackermann's Formula for an nth order system is

3 given here. To simplify this development, the nth order system described

in (A-l) and (A-2) will be transformed to observer canonical form

x(k+l) = Ax(k) + Bu(k) (A-I)

y(k) = Cx(k) (A-2)

A system is in observer canonical form when all the feed back loops come

from the observed (output) signal; the structure of a system in this form

I is shown in Figure A-l. The reason for using the canonical form is that

j both the systems state matrix equations and the systems transfer function

can be determined by inspection. This ease of determining these equations

jis seen in the case of the observer canonical form, where the systems state

matrix equations are

xl.(k+l) a1  1 0 ... 0" x1(k) b

I x2(k+l) a2 0 1 ... 0 x2(k) b2
x3 (k+l) a 0 0 ... 0 x3 (k) + b3  u(k)

Xn l (k+ l )  a._l  0 0 1. l * X l (k )  b~

Xn(k+l) an 0 0 . 0 xn(k) bn

(A-3)

[ y(k)-[1 00 ...0 0] x (k)

x2(k)

x3(k)

I. (A-4)

Xnl (k)

Xn (k)

and the transfer function is
84
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blzn + b2zn2 + + bn-iz + bn
G(z) 1 n-2 n-2 (A-5)

-a z .a2 z ..- anl z - an

It should be noted that the transfer function can be determined directly

from the state equations, with no calculations required.

Consider now the effects of an arbitrary transformation of the state

vector x(k) to w(k)

x(k) = Tw(k) (A-6)

where the nonsingular matrix T is nxn, and the new state vector w(k) and

the old state vector x(k) are both nxl. From (A-6), a new set of system

state equations can be formed.

x(k+l) = Ax(k) + Bu(k) (A-1)

Tw(k+l) = ATw(k) + Bu(k)

f w(k+l) T1 ATw(k) + T-1Bu(k) (A-7)

and

y(k) = Cx(k) (A-2)

F y(k) = CTw(k) (A-8)

The system described by (A-7) and (A-8) can be made to fit the observer

canonical form of (A-3) and (A-4) if the correct choice of the matrix T is

Fmade. For notational purposes, if (A-7) and (A-8) do in fact describe a

system that is in observer canonical form, they will be rewritten as

! _(k+l) - AcW(k) + Bcu(k) (A-9)

y(k) - Ccw(k) (A-10)

where
86



Ac = T-1AT (A-Ila)

BC = T1B(A-llIb)

* Ic~ = CT (A-llc) I

* The subscript c will signify that the matrix is in the canonical form.

Before continuing, it is necessary to show the relationship between

the observability matrix of the system described by (A-1) and (A-2) and

the observability matrix of the system described by (A-9) and (A-10). The

matrices are

C

CA

e= CA2 (A-12)

and

CC

c~c

C A n-b

respectively. Substituting (A-11) into (A-13) gives

CT CT 1
CT(T1 IAT) CAT

CT(T1 AT)2  CA T
ec (A-14)

LCT(T 1 AT)n- 1 J LCAn-1 T J
871



Comparing (A-14) and (A-12) gives the desired relationship

ec eT (A-15)

I solving for T yields

T T=e ec (A-16)

Later on this will be a ijseful expression for the matrix T.

An observer can be designed for the system described by (A-1) and

(A-2), with the observer state equations given by

;(k+l) = A;(k) + Bu(k) + Ly(k) - LCx(k) (A-17)

Again consider a transformation of the state vector

X(k) = Tw(k) (A-18)

Substituting (A-18) into (A-17) gives

Tw(k+l) =ATw(k) + Bu(k) + Ly(k) -LCTw(k)

_~~l T- ATw()T Bu( k+T-Ly(k) - LCTw(k) (A-19)

Using the notation given in (A-l1), (A-19) becomes

_~~) w(k) + B u(k) + Lcy(k) - LcCc w(k) (-0

where

ILC = T L (A-21)

Now the problem is to develop an expression for the gain matrix Lc

From this, an expression for the desired gain matrix L ca, be found through

L L TLC (A-22)
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An expression for the matrix Lc can be found by matching the coeffi-

cients of the observer's characteristic polynomial to the coefficients of

the desired characteristic polynomial. The characteristic polynomial of

the observer, in terms of the matrix Lc, is found by

aL(Z) = IzI-[Ac-LcCc]I (A-23)

But, the matrix [A c-L C c will be in the observer canonical form, so there-

fore, the characteristic polynomial can immediately be written

aL(Z) = zn-(al-tcl - (a 2-zc 2 )zn -2 -.. (an~- c(n-l)

- (an-Icn) (A-24)

If the desired characteristic polynomial of the observer is

a(z) = zn-al 1  a2 zn2 anlZ-cz (A-25)

then the matching of the coefficients of (A-24) and (A-25) gives

al = altcl ' =2 = a2 c 2 ' "" an-l an-l- c(n-l) ' cn = 'n-cn

In general terms,

a=a - Lc (A-26)

Solving for the matrix Lc 9

Lc = a-_ (A-27) :

where a is an nxl column vector of the coefficients for the system's *1
characteristic polynomial, and a is an nxl column vector of coefficients

for the observer's desired characteristic polynomial.

A relationship between these polynomial coefficients and the system

matrix Ac, is now necessary. This is done through the use of the Cayley-
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Hamilton Theorem [7]. This theorem states that a matrix satisfies itsI
own characteristic equation. For the system matrix Ac, this theorem

gives

n 1A n- -2 nAn al A  - an-2 a Ac - a nI = 0 (A-28)

Next the polynomial c(A ) is formed, which is the observer's desired
C

I characteristic polynomial with the matrix A substituted for the variable

z(Ac An  n-I a n-2 a A naI  (A-29)

c c I c " "'" - - "

Solving (A-28) for An and substituting it into (A-29) will give the rela-

tionship required.
n- 1 n-2

a(A) = (al-al) Ac - + (a2- 2)A c  + ... + (an-l-n l )Ac

+ (an-a n)I (A-30)

At this point it is essential that the unit vector, en be defined.

Let e? be an nxl column vector which is equal to the ith column of-1

I' the nxn identity matrix.

Since the matrix Ac is in observer canonical form, an interesting

thing happens when the unit vector _n is premultiplied by the matrix Ac ,

[ -0
0

c-n en

0

m and premultiplying (A-31) by the matrix Ac again gives

I m90



0

0

A(An) A = en2 (A-32)AcAc-n)% Ac-n n--2

0
0

continuing in this manner will generate successive unit vectors, until

0
An-l en = 0 e =e (A-33)
Ac eni -l(

0

Therefore, if (A-30) is postmultiplied by en the following poly-i -- n'

nomial is obtained
n n. ne n - l

a(Ac) = (a -al )ej + (a2 -a 2 )e + + (a n-nl

+ (an-an )en (A-34)

Examination of (A-34), with the help of the relationship shown in (A-27),

the following becomes apparent.

c(Ac)_n = Lc (A-35)

which is the needed expression of the gain matrix Lc*

With (A-35) and the relationship given in (A-22), an expression for 11
the gain matrix L can now be found 1

L = TLc  (A-22)

= TcI(Ac) en

= T(T' 1 AT)e n
-n

= TT I % (A )Ten

S..91
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I

L = a(A)Te. (A-36)

The expression shown in (A-36) can be used to calculate the gain

matrix L if the transformation matrix T has been found. But calculating

the T matrix is not necessary if the expression developed for the T ma-

I trix in (A-16) is substituted into (A-36). Doing this gives

i n
L = a(A)e' l6cne (A-37)

It should be now noted that the product of any nxn matrix, R, and

I n
the unit vector, e1 , will give the ith column of the matrix R. Therefore,

Ithe last two terms of (A-37) will give the nth column of the observability
matrix e . But if the matrix ec is completed, it will be found that its

nth column is again the unit vector en, so thereforee n n

ecn en (A-38)Sc-n -I,

Substituting (A-38) into (A-37) gives

1
L = n(A)e 4 (A-39)

I which is recognized to be Ackermann's Formula as stated in (2-27).

9
I

I
I
I
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1 IThis program computes the gain matrix L, based on Ackermann's
2 IFormula.
10 DIM A[10,10],B[10,4],C[1,10]
20 DIM F[10,10],L[10,1]

30 DIM W[10,10] ,R[10,10] ,T[10,10] ,Q[10,10]
40 DIM U[1,10],H[10,1],P[10],S[1,1]
100 READ N,NI
101 IN is the order of the system and Ni is the number of inputs.
110 MAT A=ZER(N,N]
120 MAT B=ZER[N,NI]
130 MAT C=ZER[1,N]
140 MAT F=ZER[N,N]
150 MAT L=ZERfN,1]
160 MAT W=ZER[N,N]
170 MAT R=-IEN[N,N]
180 MAT T-ZER(N,Nj
190 MAT Q=ZER[N,N]
200 MAT U=ZER[I,N]
210 MAT H=ZER[N,I]
220 MAT P=-ZER[N]
300 N2=N+1
310 MAT S=ZER[1,N2]
320 MAT READ A,B,C,S
321 !The matrix A is the system matrix
322 !The matrix B is the input matrix
323 !The matrix C is the output matrix
324 !The matrix S contains the coefficients of the desired
325 !characteristc polynomial.
330 FOR I=l TO N
340 J=I+1
350 P[I]=(-1)*S[1,J]
360 NEXT I
370 PRINT "MATRICES OF THE SYSTEM"
380 PRINT "MATRIX A"
390 MAT PRINT A
400 PRINT "MATRIX B"
410 MAT PRINT B
420 PRINT "MATRIX C"
430 MAT PRINT C
440 PRINT "COEFFICIANTS OF DESIRED CHARACTERISTIC POLYNOMIAL"
450 MAT PRINT S;
460 FOR I-i TO N
470 M-N-(I-1)
480 MAT U=C*R
490 XP[M]
500 MAT W-(X)*R
510 MAT T-T+W
520 FOR K-1 TO N
530Q [I,KJ-U(1,K)
540 NEXT K
550 MAT W-R*A
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560 MAT R=W [
578 NEXT I
580 MAT W-R
590 MAT T-W-T
600 MAT W=INV(Q)
610 H(N,I]=
620 MAT QT*W
638 MAT L=Q*H
648 MAT W=L*C
650 MAT F-A-W
660 PRINT "MATRICES OF THE OBSERVER"
670 PRINT "MATRIX F"
688 MAT PRINT F
698 PRINT "MATRIX B"
700 MAT PRINT B
710 PRINT "MATRIX L"
720 MAT PRINT L
9999 END
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1 !This program calculates the discrete system model trcm the
2 Icontinuous system matrix equation.
3 !A is the continuous system's system matrix.
4 1B is the continuous system's input matrix.
5 !R is the discrete system's system matrix.
6 !S is the discrete system's input matrix.
7 IG,H,K, and L are working matrices.
100 DIM A[10,10],B[10,10] ,R[10,10],S[10,10]
110 DIM K[10,10] ,L[10,10] ,G[10,10] ,H[10,10]
200 PRINT "INPUt T, SYSTEM CRDER, AND NUMBER OF INPUTS"
210 INPUT T,N,P
220 PRINT "INPUT NUMBER OF TERMS TO BE USED IN SERIES"
230 INPUT F
240 PRINT "INPUT CONTINUOUS A MATRIX, BY ROWS"
250 MAT INPUT A[N,N]
260 PRINM "INPUT CONTINUOUS B MATRIX, BY ROWS"
270 MAT INPUT B[N,P]
280 PRINT
290 PRINT USING 190;T,N,P
300 IMAGE "T=",2D.3D3X,"SYSTEM ORDER=",3D3X,"# OF INPUTS=",3D/
310 PRINT "CONTINUOUS SYSTEM A MATRIX IS"
320 MAT PRINT A
330 PRINT "CONTINUOUS B MATRIX IS"
340 MAT PRINT B
350 REM1 TO INITIALIZE AND SET DIME2SIONS ON MATRICES
360 MAT R=IcN[N,N]
370 MAT S=IEN(N,N]
380 MAT L=ID)N[N,N]
390 MAT G=ZER[N,N]
400 MAT H=ZER[N,N)
410 MAT K=ZER[N,N]
420 FOR J-1 TO F
430 MAT G=L
440 MAT L=(T/(J+1))*G
450 MAT G-Li
460 MAT [,G*A
470 MAT S-S+L
480 MAT K=(J+1)*L
490 MAT R=R+K
500 NEXT J
510 MAT H-S
520 MAT S=(T)*H
530 MAT G-ZER[N,P]
540 MAT GS*B
550 PRINT "DISCRETE A MATRIX IS"
560 MAT PRINT R
570 PRINT "DISCRETE 1 MATRIX IS"
580 MAT PRINT G 19999 END'
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C
C This program simulates the Control System~ of the F4J Aircraft.
C
C This portion of the program sets up the system.
C

CCM41aN/MAT/A(23,23) ,B(23,l0) ,C(8,23) ,D(8,l0)
COMM1.0/VECT/X (23) ,U(l0) ,FN(23)
OMKf/COWINT/XI (23) ,N,NU ,NY,NF
CCMMCN~/CONREE4 r, H, SFREQ, TZERO,SR
CCVRMD/IX, IY, IZ

4 FORMAT('01,9X,'THE STARTING RANGE IS',F20.5)
7 FOR44AT('-',9X,'N-',I2,10X,'NU=',I2,lOX,'NY=-',12,IOX,'NF=',I2,//)
8 FORMAT(8F10.3)
9 FORRAT(F20.5)

10 FORMAT(5F10.5)
100 FORAT(5X,I5,5X,I5,5X,I5) :
1000 FOERAT('-,9X,TZERO= ',Fl0.6,3X,'TF=- ',F10.6,3X,'H'-,F10.6,3X,

&'FREQ=' ,FIO.6,3X,'SFRE2' ,Fl0.6,//)
1001 E ORMAT(-0',10X,-THE A MATRIX'!)
1002 FORMAT(W0,10E13.4)
1003 FOR.MT('0',10X,'INITIAL CON~DITIONJS FOR STATE VECTIOR,X'/)
1004 FORMAT('0',l0X, 'THE B MATRIX'!)
1007 FORMAT('0',10X,1THE C MATRIX'!)
1010 FORMAT(1Hl,4X,23HGRAPHICAL TIME RESPONSE)
10l1 E ORMAT(//, 133 (lH*))
1111 FORMAT('0',l0X,'THE D MATRIX',!)

READ(5,100) IX,IY,IZ
C
C The values IX,IY,ard IZ initialize the randomi numnber generators
C of the wind and radar noise disturbances.
C

CALL MATRIX i
READ(5,10) TZERO,'TF,H,FREQ,SFREQ

C
C TZR is the starting time, TY is the final time, H is the
C integration period, FREQ is the output frequence, and SFREQ is the
C sampling frequence.
C i
C
C The vector XI is the initial condition vector of the aircraft.
C :

RM D(5, 9) S R
C
C SR is the starting range.IA
C

WRITE (6, 1010)
WRITE(6,1011'
WRITE(6,1000) TzERO,TF,H,FREQ,SFREO
WRITE(6,7) N,NU,NY,NF
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WRITE(6 ,1001)I DO 2 I=1,N
2 WRITE(6,1002) (A(I,J),Jm1,N)

WRITE (6, 1004)
DO 62 1-1,N

62 WRITE(6,1002) (B(I,J) ,J=1,NU)
WRITE(6,1007)
DO 64 I=1,NYI64 WRITE(6,1002) (C(I,J),J=1,N)
WIRITE (6, 1111)

* DO 88 1-1,NY
88 WRITE(6,1002) (D(I,J),J=1,NU)

* WRITE(6,4) SR
WRITE (6, 1003)

WRITE(6,1011)
IFQ=FREQ
T-nZERO
CALL TRESP(TF,IFQ)

EDD
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BL40K DATA
C
C This subroutine clears all the matrices and vectors. -

C
COMM9N/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,l13)
CCxMMel/VECT/X (23) ,U(10) ,FW(23) ~
DAM A/529*0.0/,B/230*0.0/,C/184*0.0/,D/80*0.0/
DATA X/23*0.0/,U/10*0.0/,FN/23*0. 0/
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C This subroutine generates the non-zero elem~ents of the A,B and C
C matrices.

~~j ~C.MC/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,10)
Cct4MCIN/VECr/X (23) ,r.(10) ,FW(23)
co~mmcNINT/rxii (23) ,N,NEJ,NY,NFI DATA AM,AXE,BB,CB,G,GE,RE/1057.,.2234,38.666,16.04,32.2,-.0611,

&.002378/
V DATA S,TE,VE,W,XI,XZI,ZI/530.,.1623,220.8,34000.,25600.,21500.,J &145200./

DATA CIB,CLP,CLR,CLnA,CWZR,CNB,CNP,CNR/-.1565,-.275,.207,-.0573,t I &.00286,.1982,-.013,-.31/
DATA CNDA,CNDR,CYB,CYP,CYR,CYDA,CYDR/-.0043,-.0722,-.647,1.26,
&717,-0356 , .1345/

1 NF=3
NFt=3
NY=2
B1=RE*S*VE**2/ (2.* (XI*ZI-XZI**2) ) *BI A(1,4)=1.
A(1,5)=TAN(TE)
A(2,5)1l./COS(TE)I A(3,1)=G*COS(TE)/VE
A(3,3)=RE*S*VE*CYB/(2.*AM)
A (3, 4)=E*S*BB*CYP/ (4.*AM) +SIN (AXE)
A (3, 5)=R*S*BB*CYR/(4.*AM) -COS (AXE)
A(3,7)=RE*S*VE*CYA/ (2.*A?)/57. 3
A(3,9)=19. 36*RE*S*VE*CYER/(2.*Am)/57.3
A(4, 3)=B1* (ZI*CLB+XZI*CWB)
A(4,4)=Bl*BB/ (2.*VE) *(ZI*CLP+XZI*CNP)
A(4,5)=B1*BB/(2.*vE) *(ZI*CLR+XZI*CNR)
A(4,7)=B1* (ZI*CLDA+XZI*CNItA)/57. 3
A(4,9)=19. 36*Bl* (ZI*CLIR+XZI*CNDR)/57. 3
A(5,3)=Bl* (XZI*CLB+XI*CNB)
A(5,4)131*BB/(2.*VE) *(XZI*CLP+XI*CNP)
A(5,5)=Bl*BB/ (2.*VE) *(XZI*CLR+XI*CNR)
A(5,7)=B1*(XZI*CLEA+XI*CNEA)/57. 3
A(5,9)=19. 36*B1* (XZI*CLD)R+XI*CNDR)/57.3
A(6,1)=-VE*SIN(AXE)I A(6, 2)=VE*COS (GE)
A (6,3)-VE
A(7,7)=-10.
A(8,4)=.0262*57.3
A(8,5)-.9996*57. 3

A(9,9)-n-20.
B(3,2)RE*S*VE*CYB/ (2.*AM)
B(4 ,2)=B1* (ZI*CLB+XZI*CNB)
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B(5, 2)=B1* (XZI*CLB+XI*cNB)
C(1,6)=1.e

EMD

1031



SUBROUTINE TRESP (TF, IFREQ)
C
C This subroutine gives the time response of the control system.
C

CCt4!VN/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,10)
COM?.VN/VECT/X (23) ,U(10) ,FN(23)
Ca. McN/PUxx/P (10,100)
COtMCt/CCtP/R(10,100)
CMMN/CONINT/XI (23) ,N,NrJ,NY,NF
CMN/CONREL/T,H, SFREQ, TZ ERO, SR
C'MN/YTr/DTSAMP
COMMCN/ESTA/EST1, EST2, EST3
C0MMON/ABFIr/ABY,ABYD0T
CCMMON/COUNT/NCON
CCMON/MSESD/SDEPS ,SDIPS,SDEVS, 5DM/S ,SPOSS
COMcX /AN0ISE/X6DUM
CO('MC1/AMD/IX,ly, IZ
CCaf4/,()N'E/ICC,X6A(1000) ,X6S (1000) ,I(1000)
DIMENSION IR(10,100)
REAL MSEP, !PSEEP, MSEAP, MSEEV, MSEAV

10 FOIR4AT(F6.3,',' ,El0.3,',' ,El0.3,' ,',El0.3,',',El0.3,',',
&E10.3,' ,',E10.3)

11 FORMAT(' ',4X,'T='-,F8.3,4X,'AVG=',F11.7,4X,'RMS=',F11.7)
12 FO1RAT(///,10X,'TCrAL',5X,'AVG',Fl1.7,4X,'RMS',F11.7)
13 FORMAT(/,2X,13,2X,E14.5,2X,E14. 5,2X,E14. 5,2X,I10,lX,I10,1X,I10)
15 FORMAT(//,2X,'RXJN',4X,'RMSE OF POS.',6X,'FINAL POS.',6X,'MAX OFFSE
&T',8X,'IX' ,9X, 1Y' ,9X,'IZI)

21 FORMAT('+',23X,E14.5)
22 FORMAT(//,5X,'RMSE OF TRUE POSITI( 7,i<,
23 FORMAT(//,5X,'POSITION')
24 FORMAT (//, 5X, -'VELOCI TY')
26 FOI44AT(/,5X,'RMSE OF ESTIMATOR=-',20X,'RMSE OF ABFILTER= -')
27 FOFRMAT('+',9X,E14.5,23x,El4.5)
28 FORMAT('1',5X,'T',8X,'T'D ,IOX,'X(6)1,9X,'X6(DX)',9X,'EsTY',
&11X,'ABY',10X,'FN(6) ',9X,'ESTYD',9X,'ABYD')

29 FORMAT(' ',F8.3,2X,F8.3,2X,8(1P El4.5))
1000 FORMAT(/,5X,33HMAXIMUJM NUMBER OF POINTS EXCEEDED /

NR=-20
NR--l

C
C NR is the nunber of simulation runs to be used in a Monte Carlo
C run.
C

NT=IrF*SFREQ +1. 0
DO 3 I-1,Nr
X6AUE)=0.O

3 X6S(I)=O.o
DO 1 INR=1,NR

IR(1,INPR)-IX
IR (2 , I N P ) I Y1 
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IR (3, INR) I Z
DO 2 I=1,N
U(I)=0.0

2 X (I)=XI (I)
T--# ERO

A?4X60. 0

NP4=

SDEPS-o. 0
SDAI'S=0. 0
srevs--O. 0

DIGI-=0.
PmI-H*IFPBQ

40CALL DIGFIL (DIGT)
40CONTINUE

1TD(SR-220. 39*T)/220.39
NP=NP+1
P (1,NP) =T
P(2,NP)=X(6)
P (3, NP) =EST1
P(4,NP)-ABY
P (5, ND- FN (6)
P (6, NP) -EST2
P (7, NP) =ABYDOr
P (8, NP) =X6D114
P(9,NP)=TrD
P(10,NP)=0. 0
OUTri'rxIr+pvr

IF(.0r101GOTO 222

IF(T.GE.TF) GO TO 400
50 COIN

CALL XO
14 CALL RLUGE (11)

AX6--ABS (X (6))
A?4X6-AMAX1 (AMX6 ,AX6)
IF(ICC.GE.NT) 0010 400
IF( (T*1.001) .GE.DIGT) CALL DIGFIL(DIGr)
IF( (T*1. 001) .GE.Orr) GO TO 450
IF(T.GE.TF) GO M1 400
00 TO 50

222 WRITE(6,1000)

MSEP SQRT (SP SS/ON) 10



MSEEP--SQRT (SDEPS/NCcN)
MSEAP-SQRT (SDAPS/NCON)
MSEEV=-SQRT (SDEVS/NCON)
MSEAV=-SQRT (SDAS/NCCN.)
R (1, INR) =MSEPI R(2, INR)=MSEEP
R (3, INR) =MSEAP
R(4, INR)=MSEEV

R. R(5, INR) =MS EAV
R(6, INR)=P(2,NP)
R(7,iNR)=AmX6
IX=IX+3
IY=IY+3
IZ=IZ+3

I 1CTIU
DO 4 I=i,NT
X6A(I)=X6A(I)/NR

4 X6S(I)=SQRT(X6S(I)/NR)
x6AA=6 .0
X6SA=0 .0
DO 6 I=1,NT
X6AA=X6AA+X6A (I)

6 X6SA=X6SA+X6S (I)
X6AA=X6AA/NT
X6SA=X6SA/NT
PRINT 12,X6AA,X6SA
WRITE (6, 15)
DO 7 I=1,NR

7 WRITE(6,13) I,R(1,I),R(6,I),R(7,I),IR(1,I),IR(2,I),IR(3,I)
NI=0
WRITE(6,28)I DO 101 I=1,NP

101 WRITE(6,29) P(1,I),P(9,I),P(2,I),P(8,I),P(3,I),P(4,I),P(5,I),
&P(6,I) ,P(7,I)
WRITE(6, 22)

WRITE(6,21) MSEP
WRITE(6,23)

( WRITE(6,26)
WRITE(6,27) MSEEPMSEAP
WRITE(6,24)
WRITE(6,26)
WRITE (6, 27) MSEEV, MSEAV
DO 100 I=1,NP

100 PUNCH 10,P(1,I),P(2,I),P(3,I),P(4,I),P(5,I),P(6,I),P(7,I)
IF(NI.EQ.0) GOIM 401
DO 5 I-1,NT

5 PRINT 11,TM(I),X6A(I),X6S(I)f401 COTINUE
RETU RN
END
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SUBROUTINE DIGFIL (DIGr)
C
C This subroutine simuates the digital controlling unit.
C

IMPLICIT REAL(K)
C.MG/MAT/A(23,23),B(23,0),C(8,23),D(8,l0)
CMMON/VECT/X (23) ,tJ(13),FN(23)

CCMMCN/CcOI~r/XI (23) ,N,NJ, NY ,NF
CCIMCN~/CONREL/T, H, SFREQ ,TZERO, SR
CCMMTCN/GAUS SC/SIGMA, XMEAN
C~MCl/TT/DTSAMP

CCMCN/BFI,/AYBYDOT
CCM4MCN/couNT/NCct4

C"CMN/MSED/D)EP, DAP, DEV, DAy, OS .
CCMMCN/MSEDS/DEPS, DAPS ,DEVS ,DAVS, FOSS
Ccn. aq/MSESDS/SDEPS ,SDAPS ,SDEVS, SDAVS, SPOSS
CtMaC/EST/ESTl, EST2 ,ESr3

COMCN/NAOIS/X6DJM
C.MCN/MONTE/ICC,X6A(l000) ,X65(1000) ,Th(l000)
DIMENSION JYT(5) ,KRL(5) ,AlL(5) ,A2L(5) ,A3L(5),
&TRL(5) ,KCL(5) ,TAL(5) ,TIL(S) ,ALPHiAB(5) ,KBC1 (5) ,KBC3(5) ,KBC2(5),
&KBC4 (5) ,KBC5 (5) ,A4L(5)
DkTA K(1/8./
DATA Sl,S2,S3,S4,S5,S6,S7,S8,S9,S1O,S11/1l*0.0/
DATA Dr/.2,.1,.05,.033333,.025/
DATA KRW/.534,.3174,.1738,.1195,.091/
DATA A1L/.586,.766,.875,.915,.935/
DATA A2L/.414,.234,.125,.085,.065/
DATA A3L/.414,.234,.l2S,.085,.065/
DATA A4W/.024,.012,.0061,.0041,.00306/
DATA TPL/5*75/
DATA TAL/5*7.5/
DATA KCL/5*.l/
DATA TIL/5*30./ -
DAMr ALPHAB/.2275,.1211,.0625,.0421,.03175/
DATA KBCl/.96667, .98113,.99020,.99341,.99504/
DATA KBC2/l. 4D1.81132,1.94118,1.96932,1.98145/
DATA KBC3/.96667,.98113, .99020, .99341, .99504/
DATA KBC4/1.4,1.81132,1.94118,1.96932,1.98145/
DATA KBC5/.9333,.96226, .98039,.98681,.99007/
DATA K3/.57735/,XT/220. 39/ I
IF(T WNE. TZEO) GOIO 111

S2=0.0
S3-0.0
S4-0 .0

S6=0.0
S7-0. 0
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S80. .0
S9=0 .0
S10=0. .0

111 CQCNTINUE
MWSAP-l . /SFREQ
IF (DTSAMP.Gr.0.15) I=1
IF (DTSAMP.LE.0. 15.AND.ISAMP.GT.0.075) I=2
IF (DTSAtP.LE.0.07500.AND.!YTSAMP.Gr.0.04167) 1-3
IF (DTSAMP. LE.0. 04167.AND. DISAMP.Gr. 0.02911) 1-4
IF (DTSAMP.LE..0291l) 1-5
RANGE = SR-T*220.39
IF(RANGE.G.5000.) KlL=5000./RANGE
IF(RANGE.GE.5e00e.) K1L=-.1
IF(RANGE.LT.5000.) KlL=l.
K2L--l.0
K3L=1l.0
K4L=-KlL
X6DU4'=X (6)
X6DrMi-X6 (DX)I C

C Depending on which X6DUM4 statement is used determines if the radar
C noise is included in the simulation run.
C

CALL ESTMT(X6DUM, I)
CALL ABFLTR(X6DU4, I)
YIN=X (6)
YU~rIN=-FN (6)
YIn=)ABY
YDDM'I=ABYX?1'
YIN=-ESTl
YDOrIN=-EST2

J determines which values are used for the estimates of the lateral
C position and lateral velocity. Th ese are, the true values, the
C A-B Filter estimates, or the Cbserver estimates.
c

YD~-Y rI

IF(RANGE.GE.16000.) K4L-0.I IF(ABS(Y).GEl00.) K4L=0.
YDO'PF-S3+KRL (I) *(YDxOr-S3)
yYTPS4*A.L(I)+A2L(I)/D2(I) *(YDXrF-S3)
Y2DOT-S5+A3L (I) *(Y2DarP-S5)
PHIINTS6+K4L*KCL(I)/TIL(I)*(Y+Sl)/2.*ryr(I)
IF(PHIINT.GI .l0.) PHIINT--l0.
IF(PHIIN.LT.-l0.) PHIINT-l0.
CTCASK*2LXC*R()
IF (ABS CY) .GE.CTLC) Y=-SIGN(CTLC,Y)
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PHIC4P=K1L*KCL (I)* (Y+K2L*TRL(I)*YO +3*TLI*Y2DCYr)
IF (RAG. GT. 5000.) GO TO0 1001
KVL=-5 .+. 0032*RANGE
IF(RANGE.LT.0.) KVE-5.
PHIC3P=PHIC4Pj
IF (ABS (PHIC4P) Gr. KVL) PHIC3P=-SIQG (KVL ,PIC4P)

101GO '10 1002
101PHIC3P=PHIC4P

IF(ABS(PHIC4P) .Gr.21.) PHIC3PSIGN(21.,ffiIC4P)
1002 CONTINUE

PHIC2P=-PHIC3P+PHI INT
PHIC1P=-S7+ALRiAB(I) *(PHIC2P-S7)

PHICX=KBC1 (I)*PICP-C(I) *S7+BC3 (I) *S8+KBC4 (I) *S9.. c5 (I) *510
PHICL=A4L I) ~lcP 1 -A4L (I)) *511

S5=Y2W

S3-YrrTF

S6-PHI INT
S8=S7
S7=PHICIP
510=59
S9-PHICX
S11RIHICL
IF((PHICX-PHICL).GT.K7) GO TO 10
IF((PHICX-PHICL).LT.-K7) GO TO 11
U(1)=PHICX
GO TO 12

10 U(1)=PHICL+K7 '

GO TO 12 .
11 U(1)=PHICL-K7
12 CONTINUE

IF(U(1).LT.-30.) U(1)=-30.
IF(U(1).Gr.30.) U(1)=30.
DIGT=DIGT+DTSAMP

764 CONTrINUE
I(ICC) **2

X6A (ICC) =X6A (ICC) +X (6)
X6S (ICC) =X6S(IC+X (6)**

DEP-X (6) -ESTI
DAP>X (6)-ABY
DEV-FN (6) -EST2
DAV-FN (6) -ABYWr
PSS=POS**2
DEPSDEP* *210



DNVS~rAV** 2
SPSS=SPOSS+POSS
SDEPS=-SDEPS+DEPS
SIM.PS=SDAPS+DA~PS
SDVS=SDEVS+DEVS

RETUM~

KEND
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SUBROWTINE RUNGE (I I)

C This subroutine performs the integration on the continuous -

C aircraft system.
C

CaOla/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,10)j
CCNMMEN/VECT/X(23) ,U(10) ,FN(23)
CMN/CONREL/T,H,SFREQ,MTEID, SR
CCNl~/CONI~r/XI (23) ,N,WU,NY,NF

GO TO (12,13,4,15) ,11
12 Hl=.5*H

DO 600 J=1,N -

SAVEX(J)=X (J)
PHI (J)-FN (J)

600 X(J)=SAVEX(J)+H1*FN(J)
TNT+H1
RE~TR

13 Hl=.5*H
DO 700 J=1,N
PHI (J)-PHI(J)+2.*FN(J)

700 X(J)=SAVEX(J)+H1*FN(J)

4 DO 800 J1I,N
PHI (J)-PHI(J)+2.*FN(J)

800 X(J)-SAvEx(J)+H*FN(j)
T-T+. 5*H
RETUN

15 H2-H/6.
DO 900 J=1,N

900 X(J)=SAVEX(J)+H2*(FHI(J)+FN(J))
REMWU
END



SUBREUrINE A-)OM
C
C This subroutine updates the continuous system for the integration
C procedure.
CL CctCOMN/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,10)

CMC/VECT/X(23) ,U(10) ,XUOT(23)
CAL(Zl,Z2)=SIGN(AMINl(ABS(Zl) ,Z2) ,l)U(I= .
U (2)=WIND (DY)

C
C Depending on which U(2) statement is used determines if the wind
C distubance is included in the simulation.
C

XDOrO )=A(1,4)*X(4)+A(l,5)*X(5)
XDOT (2) )=A (2 , 5) *X(5)
XDCy(3)=A(3,)*X(l)+A(3,3)*X(3)+A(3,4)*X(4)+A(3,,5)*X(5)+A(3,7)*

&X(7)+A(3,9) *X(9)+B(3,2) *U(2)
XDOr(4)=A(4, 3) *X((3)+A(4, 4) *X(4)+A(4, 5) *X(5)+A(4,7) *X(7)+A(4,9) *

&X (9) +B (4, 2) *U (2)
)aOTr(5)=A(5, 3) *X(3)+A(5,4) *X(4)+A(5,5) *X(5)+A(5,7) *X(7)+A(5,9) *
&X(9) +B(5, 2) *U (2)
XaCT(6)=A(6,1) *X(1)+A(6,2) *X(2)+A(6,3) *X(3)
F2=171.9*X (l)+68.76*X (4)-..3*Fl
F2-CAL(F2, 7.5)
XDTOT(7)=A(7,7) *X(7)+10.*F2
XDO'r(8)=A(8, 4) *X(4)+A(8, 5) *X(5)+A(8,8)*X (8)
F3=.67*F2+143. 2*X (5)+3.753*X (4)

&-l .25*X(8)+211.97*X (5)
&+2 11. 9 7 *MCT(3)
F3-CAL(F3,5.)
XDCT (9) =A (9, 9) *X (9) +F3

j END
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SUBROUTINE ABFLTR (X6Dt14, I)
C
C This subroutine simulates the A-B Filter.

CCMM2N/VECT/X (23) ,r(10) ,FN(23) A
CC*QMtN/CONREL/T,H,SFREQ,TZERO, SR
CMZ4MQABFIL/Y, YWr
DIMNSION DT(5) ,ALPHIAY(5) ,BETAY(5)
DAMA S1,S2,S3/3*0.0/
DATA IDr/.2,.l,.05,.033333,.025/
DATA ALPHAY/.7599,.51,.3,.2116,.1633/ -

DATA BETAY/.4656,.1746,.0529,.025,.0145/
IF(T NME. TZERO) GO'IO Ill
Sl=0O.0
S2=0.01
S3=0.0

111 CON4TINUE
YERF=-X6DW)
YP=S1+DT (I) *S2
Y=YP4-ALPHAY (I) * (YERF-YP)
YDO1'=S2+BETAY(I)/DT(I) *(YERp-YP)
Sl=Y
S2=YtOT
RETUJRN
END
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SUBRUMINE E'fl4AT (X6DUM ,IDTS)

C This subroutine simulates the Observer.

CCMMCN/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,10)
CMMN/IVECT/X(23) ,U(10) ,E'(23)

CaMMCN/ESTA/Y1, Y2, Y3
COMMaV/ESTS/F(10,10) ,O(10,10) ,E(10,10) ,G(10,4) ,L(10) ,H(4)
CMJN/EST1/EX(10) ,S(10) ,SU(4) ,SY(4) ,Q
CCtMN/OONREL/T, HH ,SFREQ, TZERO, SR
DIMENSION Y(10)
REAL L, H,O0

10 FORM4AT (312)
20 FORMAT (4E16.7)
30 FORAAT (/,6E20.7)
40 FORMAT (//)

DAM NC/li
IF(NC.NE.1) GcYIO 901

READ 10,NE,NTJ,NY
DO 105 I=1,NE

105 READ 20, (0(I,J) J=1,NE)
DO 102 I=1,NE

102 READ 20,(G(I,J),J=1,NU)
104 READ 20,(H(J),J=1,NE)

DO 103 I=1,NE
103 READ 20,L(I)

PRINT 40
PRINT 10,NE,NTJ,NY
PRINT 40
DO 205 I=1,NEI 205 PRINT 30, (O(I,J) ,J=1,NE)
PRINT 40
DO 202 I=1,NE

202 PRINT 30, (G(I,J) ,J=1,NU)
PRINT 40

204 PRINT 30, (H(J) ,J=1,NE)
PRINT 40
DO 203 I=1,NE

203 PRINT 30,L(I)
PRINT 40

901 CONTINUE

IF( NE TZRO)GOIO 111

DO 51I1N
501 S(I)=0.0

DO 502 I-1,NUj502 SU(I)=O.O
DO 503 I-1,NY

503 SY(I1h0.0
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11 CONTINU4

DO 402 I=1,NU
402 SU(I)-U(I)

DO 403 1=1,NY
403 SY(I)=X6DUM

DO 603 I=1,NE
DO 603 J=1,NE

603 E (I,J)=L(I) *H (J)
DO 604 I=1,NE
DO 604 J=1,NE

604 F(I,J)0O(I,J)-E(I,J)
DO 300 I=1,NE

300 Y(I)=0.0
DO 301 I=1,NE
DO 301 J=1,NE

301 Y(I)=Y(I)+F(I,J)*S(J)
DO 302 I=1,NE
DO 302 J=1,NU

302 Y(I)=Y(I)+G(I,J)*SU(J)
DO 303 I=1,NE
DO 303 J=1,NY

303 Y (I) =Y (I) +L (I) *SY (J)
Y1=S (1)
Y2-S (2)
Y3-S (3)
DO 401 I=1,NE

401 S(I)-Y(I)
RETUN
END
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IC

1 C The remainder of this program is -ievoted to generation of the wind
C and the radar noise disturbances.

FUN~CTION WIND (DY)

SDYWSY=0.0

DY=1.0
WIND=SDYWSY+WDSCLY* (RANNU2 (DX)-0. 5) *2
RET~URN
END

FUNC2TION RANNU.'1(DX)1 CM7MN/PAM/IX,lY, IZ
IX=-IX*6 5539
IF(IX) 2,2,3

2 IX=IX+2147483647 + 1
3 RANNUM=(FLOAT(IX) *0.4656613D-9)
REIMJ
END

FUNCTION RANNUl (DX)
CCMM?42/RAl4D/IX, IY, IZ
IY=I*6 5539
IF(IY) 2,2,3

2 IY=-IY+2147483647 + 1
3 RANNU1=(FLOAT(IY) *04561D9
RE1UM~
END

FUNCTION RANNU2 (DX)
CCMMoN/RAMD/IX, Y, IZ

IZ1IZ* 65539
IF(IZ) 2,2,3

2 IZ-IZ+2147483647+1
3 RANNtJ2=(FLOAT(IZ) *0.4656613D-9)

REIMJR
END
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FUNCTION GAJS 1 (DX)j

A1=0.0
DO 50 I=1,12

50 A1=A1+RANNJ1 (DX)
GAI= (Al-6. 0) *SIGM1+XME~
RETURN
END

FUNCTIN GArUS(DX)

A1=0 .0

50 A1=A1+RANNUM(DX)

GAUJSS= (A1-6. 8) *SIGMA+XMEA
RETUFN
END

FUNCTION X6 (DX)
CCMMCN3/VECr/X (23) ,U(10) ,FN(23)
CCt4WN/CONREL/T, H, SFREQ,TZERO, SR
CC.MCN/RANG/RANGE
DATA S1,S2,S3,S4/4*0./

s1=8.0
S2=0.0

S4=0O.0
111 CCNTINUE

PHI=ATIAN( (X(6)+178.1)/(RANGE+762.9))
DPHIN=. 382*S1+ .15*S2+. 122*S3-.0045*S4+.0005657*GAJSS (DX)
PHIM=PHI+DPHIN+ . 000148*GAUJS1 (DX)
S4-S3
S3-S2
S2=-Sl
S1=DPHIN
X6-(RANGE+762. 9) *TA14(PHIM) -178.1
REIMR
END
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Radar Centroid Investigation

A method of estimating the centroid location of a target utilizing

f scan return amplitude-versus-angle information was introduced. The

method was compared to three thresholding estimators and a first moment

estimator in a computer-simulated automatic landing system.

It was found that the method introduced was the most robust and ac-

curate of the estimators in noise, due to its unique scan rejection capa-

bility. In periods of high signal-to-noise ratio the method had less

error than the thresholding methods, and was similar in ability to the

first moment estimator. Further, the pulse transmissions required to ob-

tain a desired level of performance was much reduced from the thresholding

methods employed in the simulation.
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I. INTRODUCTION

I Essential to the performance of any tracking radar is an effective

target centroid estimator. The purpose of this investigation was to ex-

amine the accuracy of several target centroid estimators in a comparative

fashion, and to develope a non-thresholding algorithm as part of this

project. This analysis was conducted using a simulation of a landing

radar tracking a passive target.

Only the fundamental features of the new algorithm and its develop-

ment are presented here. A complete description and thorough analysis

are being compiled for a subsequent report.

I
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II. OVERVIEW OF THE SIMULATION

The computer simulation describes a large jet fighter aircraft in a

normal ground controlled approach (GCA) with the radar antenna located

500 meters from the runway touchdown point, as shown in Figure 2-1. The

simulation initiates the flight with the target 3.72 nmi downrange from

the runway touchdown point, or 4.0 nmi downrange from the radar antenna.

The target model is allowed to approach the runway at a constant 148.6

mph on a 3.5 degree glideslope. The radar is a phased-array 3-D pencil

beam radar utilizing a null-to-null cross-type scan, which scans the tar-

get as it moves. The simulation varies the location of the target in the

scanning window by use of a uniform random number generator before the

start of each scan. The scanning window is always wide enough to fully

scan the target.

The simulation executes a single scan on the moving target and then

increments time to allow the radar to perform its other search and track

duties, and to move the target down the glidepath. The simulation aborts

when the target is within 90 meters of the runway touchdown point.

The target model used is an ensemble of three anisotropic scattering

complexes representing the left wing, right wing, and fuselage. The lo-

cation of the scattering complexes in the target coordinate system is

shown in Figure 2-2(a), and the arrangement of the scattering points in

a scattering complex is shown in Figure 2-2(b). The equations describing

the scattering complexes are given in Table 2-1. In this work, the angles

I1
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Table 2-1. Radar cross section equations for the I
target model scattering complexes

RCS equation for all points:

a(e,f) = A(ef)jAx() + Ay(a) + A () (mI2 ) j

where: J
kd

AX(a) = cos ( cos )

kd a, 6, 8 are assumed
A (a) = cos cos 6) the same for each scatterer

and are defined in Figure 2-2.
kd

A z() = cos (2i cos 0)

Fuselage (FUS) RH Wing (RW) LH Wing (LW) i

dx a 1n d 6m dx  6m

dy = 2m dy =4m d = 4m

dz a 2m u z  2M

Amplitude Envelopes

(lO(e-r/2) 2 + M 75 2 + 8) M.. <

(vr/2) 2 2 - 2
AFUS(e$,)

2 75 2 3v(IO(e-Br/2) , l)(+ -. (.,) + 8) < f <
v/ 2

ARW(e,,) (100(e-r/2)2 +l)(l - SIN(*)

ALw(9,4) = (100(e-x,/2)2 +l)(l + sin(O)

5
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I

* and e are not the spherical phi and theta, but rather relative angles

measured from the nose axis of the target coordinate system. Phi de-

scribes that angle in azimuth, and theta describes the angle in eleva-

tion. Figures 2-3, 2-4, and 2-5 are plots of the radar cross section

(RCS) in azimuth of the fuselage, right wing, and left wing, respectively.

The composite cross sections of the target model in azimuth, Figure 2-6,

and in elevation, Figure 2-7, are not used by the simulation, and are

presented here for completeness. The radar cross sections in polar form

of the fuselage, right wing, and left wing, are shown in Figures 2-8,

2-9, and 2-10, respectively. The built-in shadowing effect of the fuse-

lage on the wings is especially evident in Figures 2-9 and 2-10. The

composite cross sections in azimuth, Figure 2-11, and elevation, Figure

2-12, are again shown for completeness. All figures are for a wavelength

of 3.3 cm.

The individual returns from each of the scattering complexes are

weighted by the antenna pattern before being summed on a power basis.

This process is repeated for every simulated transr 'ssion of a pulse from

J the radar. Although only one pulse is transmit'.ed at each beam pointing

location, time is incremented as though three pulses are transmitted.

I When the simulation noise option is enabled, random gaussian noise is

added to the resultant return on a power basis. The noise power is 15 dB

down from a relative maximum scan (without noise) at far range.

To simulate turbulence, the target coordinate system is allowed roll,

pitch, and yaw, with the origin of the target coordinate system locked on

Ii the 3.5 degree glideslope. To simulate calm air, the target model main-

[ tains a "wings level" attitude for the duration of the flight.

6

II '' m mm m mmm , _ _' _ _m m m mm



0 1
aw

o C

00

LUI

42~~ mm0-

___ __ 
4- 4'00

S 4-'

- 0)

_____40 
0EV

N *x

ox toNt"MW
000 00,01- 00'0?- 0o'os- 00*0b- '-X

90 NI 3ofliIJd 3AIiHU19Y ij



i i

! 0
! ii

i 80 NI 30nlI~dU 3AI17Y

0m 0

-4-

- ..' .• 0

0' €

-w 0 o

CrCm

_C 
S___ __ 

4iJ V I

4.J
t4

f. ) 0

(- 4
0 4-'

co

8Ii



0 N3
0[

x r_
g0 NI JonlLi~dWU 3AI1UY 0o

ooo .. ooo- oo'o1- 00"09-pO-

coo

-1c

u fa

C

o 54o

-3 #4- CA

"CD- " D - ' -  = >-

0 4

m__ _UJ_

- 2t

OO'O 'o6 o ~o N0X0
* C%

90 NI AoniildW8 3AII813



9NI 2oiiw AII813UJ
000 0- 00-01- 00S- 0 OOO-o C

-4A

4-

0c

____ 4-AC

______N 0
- ~ -- - LU.9

________

CD~ C3. 1- 0

4J 0
0 -

*; 0

co u r

101



20 NI :30fLhiidwu 2AIIU13U 0!

00*0 00*9- 00,91- 00 hZ- 00OM-0

.c4J

-r. 0

C;. 4-'

oj >

CDC
4-

4-'

*.- 0

cuo

00 - bz _ 00 - ze .-0000 ccq- 00-
GO NI3ani-lJWU3AII01-C



90

.I .
I/
1 %.$ '~' i/b/ivIA

1 270

fFigure 2-8. Radar cross section of fuselage scattering complex in azimuth,
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coordinate system. Ariplitudes are in dB cown frcm maximum.
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The target returns are calculated with the simplified form of the I
radar equation, and are output to the centroid estimators. The basic I

system parameters are listed in Table 2-2.
1 7
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I
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Table 2-2. Parameters for landing system simulation.

n Frequency 9.1 GHz
Pulse repetition frequency 6 KHz
Target initial elevation 56.6 mrad

-j Target model initial range
1 from touchdown 6890 meters

Target model speed 148.6 mph
Turbulence rates 10 deg/s roll

5 deg/s yawand pitch
Signal-to-noise ratio at far range 15 dB
Antenna beamwidth (null-to-null)

Azimuth 1 .830
Elevation 1.770

Simulation duration 103 scans

1
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III. SIGNAL PROCESSING

The computer simulation just described creates a sequence of scan

I returns from the target. In order to neglect the effects of multipath,

this work will address itself solely to that data generated by the scan

in azimuth. The target centroid is calculated from the returns as fol-

lows. A threshold determined from the scan returns is applied to the

scan. Moving in from the edges of the scan, the first occurrance of two

consecutive return voltages exceeding the threshold is located. The outer-

jmost of those return voltages are tagged as the edge-points of the target.
Since the angle to the returns are known, the centroid of the target is

I judged to be midway between the edge-points.

Three methods of setting the threshold are used in this work. Two

are the mean, the median, post-determined thresholds. That is, the tar-

J get is scanned and the returns are recorded. The mean of the scan returns

is calculated, and a threshold is set at that level. Likewise, the median

I scan return is found and a threshold is set at that level.

A third method is a pre-determined thresholding method. The antenna

beam is placed in the center of the scanning window to measure the anti-

I cipated maximum return from that scan. The threshold is set 12 dB down

from that return level. When two consecutive returns are above the 12

I dB threshold, the edge is marked and the scanning translates to the other

i side to determine the other edge-point. The requirement that the target

be fully scanned no longer exists for this method, so that fewer pulses

I are needed to locate the target.

19
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I

A fourth method used is a non-thresholding technique, the radar

centroid (Radar CG). This estimator weights each antenna pointing angle I
in the scanning window by the return from that angle, and divides the sum J
of the weighted angles by the sum of the weights (returns). The result

is the angle to the radar center of gravity of the body of the return. I
Since it requires that the window be fully scanned, all available pulses

are used.

These four methods of centroid location have been compared to the

new method, centroid location based upon return amplitude-versus-angle

signature.

20!
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fIV. THE NEW TARGET CENTROID ESTIMATING ALGORITHM

Introduction

Since all target centroid estimators are based on scan returns, it

is instructive to examine the flight scan-return history of a target.

Figure 4-1 is the scan return history of the model in still air without

noise added, which shall now be referred to as a baseline flight. This

plot was made with the target in the center of the scanning window. The

first and last beam pointing locations have negligible return amplitudes

since a null-to-null cross track is employed; the first null in the an-

tenna pattern is placed on the target at those beam locations. As is to

be expected, the maximum return occurs in the center of the scan. It is

readily seen that the scan returns over the flight are modulated, specif-

ically by the scintillation of the target model radar cross section. In

particular, note scan number 90. At this scan, the antenna is clearly in

I a null of the target RCS. We can also pick out scans 78, and with greater

difficulty, scan 58, as being in nulls of the target model cross section.

I It is in these scans, with poor target returns, that we would expect the

target location error of the estimators to increase.

A flight with noise is shown in Figure 4-2. The two large bodies of

return between scans 58 and 90 are still clearly seen, but the effect of

noise is pronounced on the rest of the flight. Beam pointing locations 1

and 49 are no longer at zero amplitude, but are raised (or lowered) in

level by noise. It is clearly seen from observation of scans 90, 78, and

1 21
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I
58 that an accurate determination of the presence of a target at those

scans would be very difficult and prone to error, whereas the detection I
of the target with a good signal return, even in the presence of noise,

is less prone to error.

Figure 4-3 is of a baseline flight with turbulence. The many nulls

in this plot are the result of the modulation of the target model radar

cross section on the target returns as model rotates on its axis in sim- I
ulation of turbulent wind conditions. Again, beam locations 1 and 49 ex-

hibit negligible returns as the null in the antenna pattern is on the

target. I
Addition of noise to the flight with turbulences is shown in Figure

4-4. The many returns that were of low signal level are now filled in -

with noise. Only those scans whose signal level rises above the noise

are suitable for target detection.

It is in this light that the work towards a new centroid algorithm

was conducted. The algorithm must be able to determine which scans are

suitable for target detection and location - and to discard all others.

The Algorithm

It is observed in Figure 4-1, which graphically depicts the scan

history of a baseline flight, that all scan envelopes have a high degree

of symmetry. That is, as the antenna beam illuminates the target first -h

with the pattern null, then increasing the illumination as the main lobe

moves onto the target, reaching the maximum when the beam is centered on -

the target, then dimenishing as the target is placed in the pattern null, ]
the overall scan envelope takes on a bell shape due to the modulation of

the antenna beam. Since the return envelopes are of this shape, each side

24 1
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I
of the bell shape has a unique point, the point of maximum slope. Return-

ing to Figure 4-2 it is observed that the maximum slope of a scan with a

low SNR (such as scans 58, 78, and 90) is relatively small, and those

scans with large SNRs have a relatively large maximum slope. This, then,

is the chosen criterion: Find the point of maximum slope; compare the

slope at that point to a minimum acceptable value and set the edges of

the target or centroid.

The method used to find the point of maximum slope is based on the

scan shape. Referring to Figure 4-5, let us assume that we are using a

cross track with a granularity of 5 beam pointing locations. The rela-

tive amplitudes of the extended returns are marked by the lettered X's on

the drawing. Moving from left to right, the first three returns have a

positive second derivative, since the slope BC is greater than slope AB.

Points B, C, and D have a negative second derivative, since slope CD is

less than slope BC. Since the point of maximum slope is where the second

derivative is zero, that is, where the second derivative changes sign,

the maximum slope must have occurred between points B and C. Having found

the maximum slope, we check to ensure that its' magnitude is greater than

the minimum acceptable slope. If it is, the target edge is marked as

being midway between points B and C, and scanning translates to the other

side of the scan. The process is then repeated for returns G, F, E, and

D. When the two target edges are found, the centroid is placed midway

between the edge points. Since the target is located by calculating

second derivatives, this method is referred to in this work as the second

derivative method or SDRV.

A thorough comparitive analysis of this method will be presented in

a forthcoming report.
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Figure 4-5. Illustration of the method employed to determine the tar-

get centroid location tased on the shape of the scan
envelc'e. The signal returns are marked by X.
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V. Conclusion

The fundamental features of the new centroid algorithm were presented

!• against the background of the cross-scan tracking technique. Analysis

presently being concluded seems to indicate that the new method is gener-

ally both more accurate and robust than the techniques used for comparison.
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I. INTRODUCTION

When using an AN/TPN-22 track-while-scan radar to track an approach-

ing aircraft, raw digitized measurements of position are obtained. This

positional information is filtered and processed by a control system to

determine command signals which are used by the controller to correct or

compensate for deviations of the aircraft's position from the prescribed

glideslope path.

In such a system, the positional information produced by the radar

must be processed to yield a smoothed present-position estimate, a

smoothed present-position estimate, a smoothed present velocity estimate,

and a one step ahead predicted position for track correlation or bin

selection. Filters which accomplish these goals are referred to as track-

ing filters.

In track-while-scan systems, the tracking filters are realized in

the form of digital filters with fixed or time-varying coefficients. Due

to the presence of noise in such a system, it becomes necessary to design

the filters based upon the criteria of good noise smoothing and good

maneuver following. Typically systems with good noise smoothing charac-

teristics have sluggish system response which prohibits them from follow-

ing targets with rapidly changing dynamics. In contrast, systems possess-

ing good maneuver-following characteristics have large bandwidths and

thus poor noise smoothing ability. Thus, in designing a tracking filter

a compromise must be made between these two conflicting goals. One may

I
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do so by designing an adaptive filter whose noise-smoothing and maneuver-

following characteristics adapt to the current dynamics of the aircraft. I
Two approaches are presented. The first approach is based upon adaptively I
selecting the output from either a fixed parameter a-o on a fixed para-

meter aa-8-y filter. This selection is determined by an algorithm which

incorporates an estimate of the tracking error correlation coefficient.

The second approach is based upon an algorithm which automatically adjusts I
the parameters of an a-0 filter to adapt to the dynamics under track.

i
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II. BI-STATE ADAPTIVE FILTER

When tracking a moving target such as an aircraft, the positional

data obtained from the radar return is corrupted by noise. These noisy

positional measurements can be digitally filtered to provide smoothed

estimates of position and velocity. One type of filter which may be used

to smooth the noisy data is a fixed parameter (-B filter. The fixed

parameter a-B tracking filter employs an approach that, if handled prop-

erly, will provide good results with a minimum amount of computation. The

a-B filter is a narrow bandwidth filter which provides good noise smooth-

ing capabilities based on the assumption that the aircraft flies a constant

velocity, straight-line trajectory. The prediction equation is a simple

linear extrapolation and the expressions for smoothed position and velo-

city use simple gain terms a and B to weigh the effects of differences

between the measured and predicted positions. The a-s filter equations

will merely be stated in this paper and the interested reader is directed

to the referenced literature (1].

x5(k+l) = xp(k+l) + a[xm(k+l) - xp(k+l)] (4-1)
Si(k+l) = kp(k+l) + (o/T)[xm (k+l) - Xp (k+l)] (4-2)

x p(k+l) = xs(k) + T Xs(k) (4-3)

ip(k+l) = is(k) (4-4)
p

Iwhere

3
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xs (k+l) = smoothed position at time k+l

s (k+l) = smoothed velocity at time k+l

x (k+l) = predicted position at time k+l
p

ip(k+l) = predicted velocity at time k+l
p

Xm(k) = measured position at time k I

T = sampling interval between times k and time k+l

It is shown in [2] that for a fixed parameter a-B filter, a and 0 ]
are found via (4-5) - (4-7).

L-1 (4-5)=L+

where L effective length of filter window.
2i

S= I -K 2  (4-6)

Z (I-K) 2  (4-7)

Unfortunately, if the aircraft deviates from its straight-line con-

stant velocity trajectory the fixed parameter (%-a filter will be in error.

Another approach to tracking a moving aircraft is to use a filter

based on a more generalized model of the aircraft's trajectory. A more

generalized model of a maneuvering aircraft's trajectory may be obtained

by incorporating third order prediction equations in the tracking filter.

One such third order tracking filter is the fixed parameter a-6-y filter.

While a and B in the a-0-y tracking filter perform the same function as

they did in the fixed parameter a-B filter, the y term brings into play

the much needed acceleration estimate essential to tracking the maneuver- .

ing aircraft. This more generalized tracker not only maintains track

4 n n
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throughout a maneuver or turbulent condition, but in addition, provides

good estimates of position and velocity with very little increase in com-

putational difficulty. The equations for the a-a-y filter are merely

stated in this paper. The interested reader is referred to [2] for a

more detailed study.

x (k) = Xs(k-l) + T is(k-l) (4-8)-

p (k) = is(k-1) + T is(k-l) (4-9)

E(k) = Xm(k) -x p(k) (4-10)

xs(k) = X (k) + aE(k) (4-11)

is(k) = P (k) + (B/T) E(k) (4-12)

is(k) = i;(k-l) + (y/T2) E(k) (4-13)

where,

xp(k) = predicted position estimate

ip(k) = predicted velocity estimate
p

E(k) = error between predicted and measured position

xs(k) = smoothed position estimate

is(k) = smoothed velocity estimate

is(k) = smoothed acceleration estimate

The short time constant and high bandwidth of the a-B-y filter in-

sures trackability through a maneuver. However, if the aircraft is not

maneuvering, these same characteristics contribute a significant

5I I



degradation in performance compared to the simpler a-$ tracker that anti-

cipates the constant velocity straight-line motion.

It must not be apparent that to accurately track a target in motion

will require the use of the a-a filter (for straight-line constant velocity

trajectories) and the a-s-y filter (for maneuvers or turbulence). There-

fore, it is clear that some method of adaptively selecting the appropriate

filter output for the maneuvering/non-maneuvering cases must be found. -

One method of intelligently selecting the appropriate outputs of the j
z-0 or -s-y trackers is the evaluation of the tracking error correlation

coefficient. A system diagram depicting this approach is shown in Figure

4-1. The a-a and a-B-y filters operate in parallel with one another.

Prediction error estimates are generated from both filters by differencing

the present predicted position and the present measured position. As the
A

prediction error estimates are generated they are stored in an L-length

shift register (L being the effective window length of the filters.) From I
these prediction error estimates the tracking error correlation coefficient

for each filter is calculated. If the tracking error is due solely to the

radar quantization noise, which is white zero-mean Gaussian noise, then J

this error should be uncorrelated. If on the other hand the tracking er-

ror is due to positional error (maneuver) then the tracking error will be

highly correlated. The error correlation coefficients are compared to a

predetermined threshold and the appropriate filter output is selected

based on the following premises:

1) If the correlation of error is low (p 0 0) then the error

is attributed to radar quantization noise and the output i-
of the a-a filter should be selected. 1

6
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I
2) If the correlation of error is high (p > VT) then the

error is due to positional error (maneuver) rather than I
radar quantization noise and the output of the a-B-y

filter should be selected.

The equations for the prediction errors and the correlation coefficient

are given below.

E'(n) = x(n) - x(n) (4-14)

E(n) x(n) - x(n) (4-15)
a-B-y a-B-y

L-2
L-1 E E'(n-i) E'(n-i-l)

- 10 (4-16)

1 L-21- E' (n-i)2
L 1=0

where

x(n) = output of the a-B tracker

x (n) = output of the a-B-y tracker
a-B-y j
x(n) = input measurement ]

]
I
I

]
--' - - - _ - _ _.... ..- _ _
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III. A RECURSIVELY ADAPTIVE c-B FILTER

A simple a-$ filter with fixed parameters as described in the pre-

ceding section is severly limited when tracking a target that is under-

going a change in velocity. Such a velocity change may be the result of

an intentional maneuver or merely positional changes due to turbulence

or wind gusts. The inability to track during a velocity change is seen

in the predictor equations which require an extremely small velocity

change between sampling intervals to be accurate. From a frequency re-

sponse point of view, good noise smoothing qualities for a non-maneuver-

ing target would require the filter to have a low pass effect, (i.e.,

the smoothed output would depend almost entirely on the predicted values

where a and 8 approach'zero). When a change in velocity is encountered,

the filter is required to increase its bandwidth and depend more on the

measured values where a and a approach one, due to the errors in the pre-

dictor equations during a velocity change. A method is presented by

Schooler [4] to calculate optimal values of a and a recursively. This

method can be modified in order to constantly update a and B in steady

state and therefore adjust the frequency response of the filter at each

sampling interval to match the target's motion. Since the predictor is

in error when the target accelerates, the criterion for calculating a and

B is the minimization of the expected mean square error in predicted

position c 2[x P(k)] where c[.] denotes the error associated with the term

in brackets and the bar denotes expected value. Realizing the predictor

9
~2 9



equations (4-8) and (4-9) are in error during a velocity change, the

error in the predicted values can be written as:

£[X p(k+l)] = E[Xs (k)] + T E[xs (k)] + (k) (4-17)

C[ p(k+l)] = E[ s(k)]}+,A v(k) (4-18)

where Ap and Av represent the error associated with a velocity change and
2 2

are assumed to have variances a and av with a covariance P

Since the predicted values are linear combinations of the smoothed

values, minimizing the mean square error in predicted position is equiva-

lent to minimizing the mean square error in smoothed position and velocity.

By manipulating equations (4-17) and (4-18), squaring and taking the expec.

ted value, the errors is the smoothing equations can be written as [4]:

C [xs(k+l)] = 2 am 2(k+I) + {l-a)2 {C2 [xs(k)] + 2T E[Xs(k)Xs (k)]

2 2. 2+ T2  [X s(k)] + a2(k)} (4-1;,

c [s(k+l)] = {2/T21 (m2 (k+l) + C2[xs(k)]}

- {2s[l-a]/T} {c[x(k)X (k)]}

+ {l_}2 {2 [s(k)]} - (2a/T1 (ppv(k)}

+ Cv 2(k) + ( 2/T 2 } (a 2(k)} (4-20)

2,k l) is the variance in measurement error at time k+l and

t, . - o, ritten as:



C[X (k+1)X (k+l)] = (a/TI {Cm 2 (k+l)}

{-a} {/T} {c [x (k)
s

+ {1-a} {l-2} {c[xs (k) s(k)"

+ T{l-a} (1-0 ( 2[Xs(k)]}

{l-l {0/T} {ap2(k)} + 01-a} upv (k)}

Taking the partial derivatives of (4-19) and (4-20) with respect to a and

a, setting equal to zero and then solving for a and.B, the best values for

a and a at time k+l are [4]:

2 2 2 2

a(k+l) =e {[X s(k)] + 2T E[x s (k s (k)] + T2 c 2[Xs (k)] + a p2(k)}/

fam2 (k+l) + 2[Ixs (k)] + 2T :[x s (k) s (k)] + T 2 E 2 [ s(k) ]

+ o2 (k)} (4-21)

2
a (k+l) U {T x €s(k)Xs (k)] + T2 E: [k s(k)] + T v pv (k)}/{crm 2(k+l)

+ 2 [Xs(k)] + 2T c[ s(k)xs (k)]

S [x s(k)] + op (k)} (4-22)

J These equations provide recursive evaluation of a and 8 at each sampling

to keep the filter adjusted to the target's type of motion. There are many

ways to initilize the filter according to the amount of information known

concerning the target's state at the time tracking begins. Two good meth-

ods for initilization when the targets initial velocity, position, and

I
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I
acceleration are known and unknown are presented by Schooler [4]. A

block diagram of how this filter can be implemented is shown in Figure I,
4-2. 1

I

I

I

I

I
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I

IV. CONCLUSIONS J
Both methods of achieving better radar tracking of maneuvering tar-j

gets which have been presented are being evaluated via computer simulation.

Preliminary results using selected test inputs show that an improvement I
in performance can be achieved when compared to a fixed parameter a-B

~I
filter. Current tests involve implementing these filters in a computer

simulation modeling the entire control process of the MATCALS system, how-

ever results have not yet been completely analyzed to warrant inclusion

in this report. J

I

i

I

iJ

I
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